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Part I

1 Monetary risk measures

1.1 Introduction

We want to measure the risk associated to a given portfolio.
We assume that X : 2 — R is a function that describes the
value of the portfolio at a certain time horizon and given a
management rule, on the sceanario w € 2.

We want to define a function p(X) s.t.

(i) the position X is acceptable! if p(X) <0 ;

(ii) if p(X) > 0, then p(X) is the minimal capital require-
ment, i.e. the minimal amount of cash to add to the
portfolio so that he becomes acceptable.

1.2 Risk measures and set of acceptable po-
sitions

Let Q describe the space of scenarios and X : Q — R the
updated portfolio value. Assume that IM > 0, Vw € Q,
| X(w)] < M. We note X := {X : Q@ — R, X bounded} the
vector space of bounded functions.

Definition 1.1 (Risk measure). The function p: X — R is
a risk measure if;

(i) X, Y e Xst. X <Y, p(X) > p(Y) (monotony);

(ii) VX € X, Vm € R, p(X +m) = p(X) —m (cash invari-

ance) ;
(iii) p(0) = 0 (normalization).

Remark. The cash invariance property enables us to see
p(X) as the minimal capital requirement, indeed

p(X +p(x) =

And Vm > p(X), p(X +m) = p(X) —m <0.
For a given risk measure p we define
A, = {X eX, p(X) <0}
the set of acceptable positions.
Proposition 1.1. We have the following properties:
(i) if X€e A, andY € X s.t. X <Y, thenY € A, ;
(1t) inf{m eR:me A,} =0

Proposition 1.2 (Lipschitz property). If p is a risk mea-
sure, then VX, Y € X, |p(X) — p(Y)| < | X — Y|oo-

1From a regulatory point of view.

Proof.
X < V4 [|X V]
& pX) = p(Y +[[X = Yx)
< p(X) = p(Y) = [IX - Y
& pX)=p(Y) = —|X -V

We show the same way that p(X)—p(Y) < | X —Y|w. O
Definition 1.2 (Convexity). A risk measure p is said con-
vex if VX,V € X, VA € [0,1], p(AX + (1 = V)Y) <
Ap(X) + (1= A)p(Y).

Remark. The interest of a convex risk measure is that it
takes into account protfolio diversification. Indeed sup-
pose X,Y € X with p(X) = p(Y), then for all X € [0,1],
p(AX + (1 - N)Y) < p(X).

Remark. If p is convex, (n) = p(nX) is also convex, and
in particular n — p((n 4+ 1)X) — p(nX) is growing with n.
Which is desirable because for liquidity reasons it is riskier
to buy the 1000-th equity than the first one.

Definition 1.3 (Positive homogeneity). A risk measure
p is said positively homogeneous if VA > 0, VX € X,
p(AX) = Ap(X).

We say that a risk measure is consistent if it is a convex
and positively homogeneous risk measure.

Example 1.1. Let (92, F,P) be a probability space.

p(X) = E[-X], XeX,

is a consistent risk measure.

Example 1.2. p(X) = E[-X] + ay/Var[X], for a > 0,
is not monotonic. Indeed if % ~ B(p), p(X) = —up +

apy/p(1 = p).

1.3 Value-at-Risk (VaR)

We fixe a threshold A €]0,1].
X : Q — R is acceptable if

We say that a position

P{X <0} < A

Definition 1.4 (Value-at-Risk). We can then define the
VaR,

VaR)(X) = inf{m eR:P{X +m <0} <A}.

Proposition 1.3. The VaR is consistent a risk measure.

Proof. (i). X <Y, {m € RP{X+m <0} <A} C
{m € R,P{Y +m < 0} < A}, follows by taking the infimum
Vary(X) > Var, (V).



(ii). Let m’ € R,

VaR\(X +m') = inf{meR:P{X +m'+m <0} <A}
= inf{m” e R:P{X +m" <0} <A}
-m', with m” :=m 4+ m/
= VaRy(X) — m/.

(Positive homogeneity). Let a > 0, X € X,
VaRy(aX) = inf{meR:P{aX +m <0} <A}
= ainf{m' e R:P{X +m' <0} <)}
. 12 m
with m' := —

et
= aVaR,(X).

Remark. The VaR is not convex.

Example 1.3. (Q,F) is a probability space. Let Q be the
set of all probability measures on (€2, F). Define v: Q@ — R
s.t. supgeg 7(Q) = 0. We define

p(X) = sup(v(Q)
QeQ

- Eq[X]).

If @ = {P} we find the previous exemple E[—
a convex risk measure.

X]. And p is

1.4 Characterization of risk measures with
set of acceptable positions

Definition 1.5. A C X is a set of acceptable positions if:
(i) A# @ and inf{meR,me A} =0
(i) Xe A, Y e Xst. X <Y then, Y € A

If p is a risk measure, A, is a set of acceptable positions.
Reciprocally if A is a set of acceptable positions, then

inflmeR,X+me A}, XeX,

pa =
is a risk measure.

Proof. ). UX <Y, X+me A = Y+mEeA, so
pa(X) = pa(Y).
(ii). f X e X, m eR,

pa(X +m') = inf{meR X +m'+me A}
= inf{m" eR,X+m' e A} — m/
with m” :==m' +m
= pa(X) — m'.

O

Proposition 1.4. If p is a risk measure, p = pa,. In par-
ticular p1 = p2 & A, = A,,.

Proof. Let X € X,

pa,(X) = inf{meR, X+meA,}
inf{m € R, p(X +m) > 0}
inf{m € R, p(X) —m > 0}

= p(X).

Proposition 1.5. We have the following properties:
(1) p is convex & A, is conver ;

(11) p is positively homogeneous < A, is a cone.

1.5 Expected Shortfall (ES)
Let (92, F,P) be a space probability.

Definition 1.6 (Quantile). If X : Q — R a r.v., we say
that ¢ € R is the A-order quantile with A € [0,1] s.t.
P{X < g} <Xand P{X <gq} > A

We also set

gx(A) = sup{z e R,P{X <z} <A}
= inf{z e R,P{X <z} >}
k() inf{z € R,P{X <z} > A}

= sup{r e R,P{X <z} <A}

So VaRy(X) = —¢%(X) = ¢_x (1 = \).

We saw that the VaR is not convex. We will see that the
Expected Shortfall is more restrictive than the VaR and is
convex.

Definition 1.7 (Expected Shortfall). Let A € [0,1], X € &,
we define the ES associated to the threshold A,

/ VaR, (

= _X/o x (@) da

Remark. On the other hand ¢ 7 and ¢f(a) < g%(N)
for all @ €]0,A]. So ES is always defined and ES,(X) >

L [AVaRy (X)da = VaRy(X).
Remark. If X is integrable ES < co. Let U ~ U([0,1]),
g7 (U) ~ X. So E[|X|] = fo lg% (u)|du < oc.

We also have E[—q ()|U<)\_/\f0—qX u)du =
ESA(X). If X has a density, g% is bijective and

E[-X | — X > VaRy(X)].

ES)(X

El-qf(U) |U<A =

Proposition 1.6. Assume that X is integrable, A € [0,1],
and q is the \-order quantile of X, then

1

ES\(X) = ;Ella-X)"] -«



Proof.

ESy(z) 2 —;\/{)/\qx(u)du
- [ ) au - g
= 1/01 (¢ —a% () Liucny du — ¢
= %E[(Q*Xﬁ] ~-q
as % (U) ~ X when U ~ U([0,1]) and g% (A) = q. O

2 Introduction to the Fenchel-

Legendre transform

2.1 Recall on topology

Definition 2.1 (Topology). Let X be a space. T is a topol-
ogy on X if T C P(X) verifies:

(i) 9, XeT;

(ii) all subset of elements of 7 is in T, i.e. V0 € © s.t.
Ap ET, U969A9 ET;

(iii) if Ay,..., A, € T then (_, A, € T.

The elements of 7 are called open set of X ; AC X is a
closed set if X\A € T.

Definition 2.2 (Topology space). Consider X’ with a topol-
ogy T, then (X,7) is a topology space.

Definition 2.3 (Hausdorff space). A topology space (X, T)
is a Hardoff space if

(i) Yz € X, {z} is a closed set for T ;

(i) Ve,y € X, & #y, 30,0, € T st. 2 € Oy, y € Oy,
O,NOy =0.

Definition 2.4 (Base). A set B C T is a base for the topol-
ogy T if VA € T, 3(Bsg)oco € (B)@ s.t. A= Uee@ By.

Definition 2.5 (Compact space). A set A C X is a com-
pact space if for all covering of A, one can extract a finite
sub-covering, i.e. A C |Jycq By, By € T for all § € O, then
In e N*, 601,...,0, €O st. AC U, Bo,.

Theorem 2.1 (Bolzano—Weierstrass). Let A be a compact
space and (zn)nen € AV, then 3¢ s.t. (Ty(n)) has a limit.

If z € X, we call neighbourhood of = all opened space
including x. We say that (z,), € Nz, T> r if YV
neighbourhood of z, AN, Vn > N, z, € V. S

Let f : (X,7) — (&X,7T) be continuous if V0 € T,
Yo eT. -

A function f : (X,7) — R is lower semi-continuous
(Ls.c.) if Ve e R, {z € X, f(x) >c} €T.

Proposition 2.2. If f is l.s.c. and x, — x then,

liminf f(z,) > f(=).

n—oo

Proof. Let ¢ > 0, {y € X, f(y) > f(x) — €} is an open set
including . So 3N, Vn > N, f(z,) > f(x) — ¢, and so
liminf, f(z,) > f(z) —e. O

Consequently if f is l.s.c., F a closed set and F' C K
where K is a compact space. Then Jz € F st. f(z) =

infyer f(y). -
If (fg)eco is a set of Ls.c. functions, fy : X — R, then
supy fo is L.s.c.

Definition 2.6 (Topological vector space). (X, T) is a topo-
logical vector space if X is a R-v.s. and

(i) (X, T) is a Hausdorff space ;
(i) (v,y) eXx X —ax+yeXisC®;
(iii) (A, z) eRx X = Az € X is CO.

Theorem 2.3 (Hahn-Banach). Let (X,T) be a topological
v.s. locally convex. Let K,C € X two conver sets s.t.

(a) K is a compact space ;
(b) C is a closed set et KNC = &.

Then there exists | : (X, T) — R linear and C° s.t.

sup I(x)

inf I(x).
i) < i)

2.2 Fenchel-Legendre transform
Proposition 2.4. Let (X, T) and (X', T") be two topologi-
cal v.s. locally convex and a bilinear form

Xxx = R

(x,2') — (z,2'),

s.t. Vo' € X', x — (x,2") is linear and C° and Vz € X,
2’ (x,2') is linear and C°. And assume that | : X — R is
linear and C°. Then

J2' e X' JVre X, l(z) = (z,2).

Definition 2.7 (Convex function). A function f : X — R
is convex if its epigraph is a convex set. With
epif = {(z,0)€ X xR, f(z) <al

Example 2.1. z — z? is convex.
But also f s.t.

if x €]a, b]
else ,

—00
“+00

@) = {

with a < b.



Definition 2.8 (Effective domain). We call effective do-
main of a convex function f the set

domf = {zxeX, f(z)<oo}.

It’s a convex set.

Proposition 2.5. If (fg)eco is a set of convex functions,
then supy fy s a convex function.

Proof. Indeed,

episup fo = {(z,a) € X xR, sup fo(z) < o}
0 0
= ({@.a) € X xR, fo(z)<a},
[4SS]
is convex as intersection of convex sets. O

Lemma 2.6. If f : X = R is L.s.c., epif is a closed set.

Proof.
(pif)° = {(x,0) € X xR, f(x)—a >0}
= U {reX, flz)>a}
e1+ea=0 open
x{a €R, —a>ca}.
open
So (epif)¢ is an open set. O

Proposition 2.7. If f : X — R is conver and lLs.c. s.t.
Jz, f(z) = —oo, thenVz € X, f(z) € {—o00,+00}.

Proof. Let y € X, f(y) = —c0 and y € domf. If y € domf,

fAz+ 1 =Ny) < Af@)+A=-Nf(y) = —oo,
for A € [0,1]. Now let A, | 0 and f is L.s.c. so

O

Proposition 2.8. Let f: X - RU{oo} a convex function
l.s.c. then
fl) =

sup (x,2") — a.

z'eXx
a€cR
vz, (%,2")—a < f(Z)

Proof. O

Definition 2.9 (Legendre transform). Let f : X — R. One
defines its Legendre transform by

ff:x —- R
¥ = sup(z,2’) — f(z).
TeEX

f* is convex l.s.c. as supremum of convex l.s.c. functions.

So,
[x) =

IN
~
—
&

Theorem 2.9. If f : X — RU {0} is convez Ls.c., then
[ (@) = flx).

Example 2.2. With X = R, we have z — % and x — ax.

Remark. f** is the convex hull of f.

2.3 Exemples of dual spaces
2.3.1 Spaces LP and L1

Let (Q,F,P) be a probability space. And p € [1,00],
q €]1,00] s.t. %—F%:lorp:landq:oo.

For p € [1, 00] we define

L? = {X :Q — R measurable / E[|X|?] < o0},
and
L* = {X:Q—=Rmeas. /IM >0, P{|X| <M} =1}.

With these definitions we set

1
X1l E[IX|P]?
[X[oo = inf{M >0, P{|X|<M}=1}.
(LP, || - |lp) and (L, || - ||o) are Banach spaces.

Theorem 2.10. Let p € [1,00[ and ! : L? — R is a linear
CO function iff 3Y € L1 / VX € LP, (X)) = E[XY] and Y

is unique P-a.s.

Consequently with p € [1,00[, ¢ €]1,00] s.t. % + % =1
orp=1and ¢ = oco. And with X = LP, X' = L9,
(X, X'y = E[XX'] a bilinear C° form. If f : LP — R is

convex l.s.c. according to the topology of the norm | - ||,
then for all X € LP,
f(X) = sup EXX']-f"(X')
X'eLa

where f*(X) =supy¢r» E[XX'] — f(X), X" € L.

2.3.2 Duality L>/L!

The Theorem 2.10 assures that L is the topological dual
of L', 4.e. 1 : L' — R linear C°, 3Y € L™, VX € LP,
[(X) =E[XY]. But L! is not the dual of L.

But if Y € L' and X € L=, |E[XY]| < || X|lollY |1,
then VY € L', X — E[XY] is C° for the norm | - ||co-

We will equip L™ of an other topology, the weak * topol-
ogy, that we note o(L°°, L), which is engendered by the
base

(Y € L™ / Vi € [1,n], [E[X:X] - E[X;Y]| <r}.



With this definition (X,),en € (L)Y converges weakly *
towards X € L>® if VZ € L', E[X,Z] —— E[X Z].
p—00

We admit that (L>, (L%, L)) is locally convex and L*
is the dual of this space. Then [ : L> — R is linear and C°
for o(L>°,LY) iff 3Y € L', VX € L™, [(X) = E[XY].

2.3.3 Duality of measurable functions — Finite ad-
ditive measures

Let (©, F) be a measurable space. And define

X = {F:(Q,F)— R, measurable bounded Yw € Q}.

For F' € X we set |F|| := sup,cq |[F(Ww)|. (X,] -] is a

Banach space.

Definition 2.10 (Finite additivity). The application p :
F — R if finite additive if
(i) w(@)=0;
(ii) Vn € N*, A,,..
D 1(Ai).
Definition 2.11 (Total variation). The total variation of a
measure (or finite additive function) is defined by:

A, € F disjointed, p (U, 4;) =

||/J/||TV = Ssup {Z |IU’(A’L)‘7 ne N*7 Al:n eF diSjOinted}
i=1

Definition 2.12 (Bounded additive). We note
ba(Q, F) = {w:F — R finite additive / ||u|lrv < oo} ,
and

Mip(©F) = {peba(@F) />0, p(®) =1}

Remark. If p is a probability measure on (2, F) then u €
My (Q,F).
Let F' € X be a simple function i.e.

Pw) = Y aila ).

with Aq,..., A, € F disjointed. We then define

/F dp = > aip(4).
i=1
Theorem 2.11. [ : X — R linear and continuous iff
Ju € ba(Q,F) s.t. VF € X, [(F) = [ F dp.

Consequently with A = {X (Q,F) -
R bounded measurable} and X’ = ba(f2, F). Let X € X,
pwe X, (X,u)=[Xdp If f: X — R convex Ls.c. for
|| - || then

fX) = f7(X)

= sup
peba(Q,F

where f*(u) =supyex [ X du— f(X).

)/Xdu — W

3 Risk measure representation

The objective of this section is to show that any convex
risk measure p : X — R with X = {F : (Q,F) —
R measurable bounded} can be written as:

p(X) = sup Eq[-X]-a(Q),

QEM, ¢

where My ; := {y finite additive / g > 0, p(2) =1}. And
we note for p € Myy, z € X, [ Xdp = E,[X] and « :
M ; — Ry is a penalty function s.t. infgea, ; @(Q) = 0.

We will say that a risk measure is represented by a
penalty function « if:

p(X) = sup Eg[-X]-a(Q).

QEM;, ¢

Then we will refine this representation result by making
more assumptions on p.

Theorem 3.1. Let (2, F) be a measurable space, X := {F :
(Q,F) = R measurable bounded}. Then any conver risk
measure p : X — R can be written as

p(X) = max Eq[—X]— ammn(Q),

QeEM; 5
for X € X, where amin(Q) = supxeca, Eo[—X], @ € My ;.

Besides, i, is the lowest penalty function that rep-
resents p, i.e. if p(X) = supgenm, ; E@[—X]| — a(Q) then
VQ S Ml,f: Oé(Q) Z amzn(Q)

Proof. O

When the risk measure is consistent, a,,;, has an ele-
mentary form.

Corollary. If p : X — R is a consistent risk measure,
VQ € M, amin(Q) € {0,00} and we note Qper == {Q €
Mip, amin(Q) = 0}, Then p(X) = maxgeo,,.. Eq[—X]
and Qmax is the biggest set Q s.t. p(X) = supgeg Eq[—X].

Proof. p is consistent so VA > 0, X € X, p(AX) = Ap(X).
And X is a vector space so X € X iff AX € X.

amin(Q) = sup E[-AX] — p(AX)
Xex
— X sup B[-X] — p(X)
Xex
And this for all A > 0, 80 @min(Q) € {0, c0}. O



3.1 Convex risk measures in L>(Q, F,P)

Let (2, F,P) be a probability space. We are looking at the
risk measures p: X - Rs.t. p(X)=p)if X =Y as.
Hence we can see p as a function of L> to R. We note

Mip(P) = {QeMyy, Q<K P};
Mi(P) = {QeM;, Q< P}

Where Q < Pif VA e F,P(A) =0= Q(A) =0.

Lemma 3.2. If p is a convex risk measure represented by
a: My; — [0,00] and s.t. p(X) = pY) if X =Y a.s.
Then a(Q) = oo for Q@ € My ;\ My ;(P)

Proof. O

If we want to have a risk measure from a penalty func-
tion a s.t. a(Q) = o0 if Q € My 5\ M; we have have more
hypothesis on p ; typically properties on the convergence.

We will now work with X = L>°(Q, F,P).

Theorem 3.3. Let p: L>™ — R be a convex risk measure.
Define amin(Q) = supxca, EQ[—X] and Q@ € My(P). Then
the following conditions are equivalent

(i) p is l.s.c. according to the weakx topology o(L>=, L) ;
(i1) p(X) = supger, p) EQ[—X]| — amin(Q) ;

(iii) p is CO from above, i.e. if X, =% X and P{X,, <
Xnt1} =1 then p(X,) :;;7 p(X) ;

(iv) p satisfies the Fatou property, i.e. if ¥(X,)n € (L)Y,
X, 2% X, 3M, || X||eo < M, then liminf, p(x,) >
p(X).

In this case Qi s the lowest penalty function a : M1 (P) —
[0,00] s.t. p(X) = SUPQe M, (P) Eg[—X] — a(Q).

Proof. O

3.2 Invariant distribution risk measures

We now focus on risk measures s.t. p(X) = p(Y) if X and
Y have the same distribution under P. This hypothesis is
reasonable as we give the same risk to two portfolios that
have the same distribution.

It is clear that VaR) and ES, are invariant according
to the distribution. We will show that the representation
of convex risk measures that are invariant according to the
distribution is made of an elementary piece that is ESy.

In this paragraph we will need the technical hypothesis:
U € L>*(Q, F,P) s.t. U ~U([0,1]) under P.

Lemma 3.4. Let X € L™, Y € L'. We define gx(\) =
q%(\) and gy (\) = ¢ (\). Then
sup E[XY] =
X~X

sup E[XY]
Y~y

1
= /OQX(A)QY()‘) dA.

Remark. If we take X = qx(U), ¥ =
U([0,1]), then

gy (U) and U ~

E[XV] = /0 ax(Nay (V) dA.

Theorem 3.5. Any distribution invariant risk measure sat-
isfies the Fatou property.

Theorem 3.6. Let p: L>™ — R be a convex risk measure
and that is invariant according to the distribution. Then,

1
p(X)= sup / ax(Vgag (A) A — amin(@) ©
QEM;(P) JO dr
with
1
anbin(Q) = sup / q—X()‘)QQ()‘) dA
XeA, Jo dr
1
= s [ o xOhagg () dx — p(x).
xexJo ar
Proof. O

Corollary. If p is a convex risk measure and that is invari-
ant according to the distribution,

p(X) = sup

neMi(]0,1]
where Bmzn(u) = SupXeAp ‘/io,l] ESA(X):U’(d/\)

In particular if p is consistent, By = {0, 00},

/]0 SR ~ i)

p(X) = sup
HEM:(10,1]

1 / 5min(ﬂ)<°°

/ ES\(X)p(d))
10,1]

Example 3.1. We have the following:

o Let
0 if
oo else

Blp) = { #=0x

Then p(X) = ES)(X).
o Let

0 if
oo else

ﬂ(,u) _ { m= Z?:lpi(;Ai

where > .p; = 1, p; > 0, \; €]0,1]. Then p(X) =
> iz PiESH, (X).

e Let
_ B if W= pi, i € [1,n]
Blu) = { oo else
where 1, = 3701 qijon,, 2.0 = 1, ¢ij > 0, Aij €

10,1] and min; 8; = 0. Then

p(X) =

max
i€[1,n]

Z qi;ESx,; (z) — Bi.

j=1



Part 11

Notations We consider Xi,..., X, i.i.d. r.v. of density
. In this course X represents a loss. The question is how
can one estimate a quantile g, with a €]0,1[ ?

Let F be the cdf associated to u:

G = F7'(a)
= inf{z: F(z) > a}.

In the rest of the course we note F =1 — F.

Non-parametric approach Let us replace F with F;, :=
LS 1{x,<x}- The problem that we could meet is when
we don’t have a lot of observations, because a =~ 1, so it is
possible that M,, := max; X; < ¢q-

So this method theoretically robust suffers from the sam-
ple size.

Parametric approach We suppose that we know p but
it depends on unknown parameters. Indeed, Vx € R,

P{M, <z} = F(z)".

Let us define

z, = sup{z:F(z)<1} < o0

so for all z €] — 00, z,[, P{M,, < z} = F(z)" —— 0.

n—oo
If z, < oo, for all z € [z,,00[, P{M,, < x} = 1. So for
all e > 0,

P{M, <z, —e} — 0

n—oo

P{M, >z, +¢e} = 1—F(z,+¢e)" = 0

and so M, g z,. And as M, T Mo, we have a.s. Mo =z,
a.s. and so M,, == Ty

It is then obvious to see the speed of convergence.
Putting aside the fact that x, = oo this is equivalent to
look for to sequences (¢, )n, (dp)n Wwith ¢, > 0 s.t.

(M, —d,) = H, (3.1)
where H is characterised by it cdf. We have (3.1) which is

equivalent to

P{c,(M, —d,) <z} = F"(c; 'z +d,)
— G(x).

n—oo

This limit is a punctual limit and is expressed thanks to the
convergence on the continuous points of G. We will then
say that F' € D(G) which is the attraction domain of G.

4 Extreme value theory
4.1 Extreme values categories
The goal of this section is to prove the following result

Theorem 4.1 (Extreme value). If there exists two se-
quences ¢, > 0 and d,, verifying (3.1) with G non degen-
erated (i.e. # l{x>a,}) then G is in one of the following
extreme value categories: G € {¢a, Pa, A}. With

o Frechet: ¢q(x) =exp(—z~*)1z50 (> 0).
o Weibull: Yo (x) = exp(—(—2)*)Lls<o + Lzso (o> 0).
o Gumbel: A(z) = exp(—e™*).

Inversely every category can be obtained as limit of (3.1).

The next three figures are showing the density function
of the categories.

Figure 1: Frechet
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Figure 2: Weibull



Lemma 4.4. Let f be a non degenerated cdf and f, a se-

quence of cdf. Define the sequences b, and a, > 0 s.t.

f/\ fn(anz +by) — f(x). Then 3f a non degenerated cdf and
two sequences an, > 0, by s.t. fn(anz +by) — f(2) iff

/ \
{ \
an
— —— a and

| \
/ \
Ap n— 00

I- \
1 by, — by, b

A, n—00

for a given couple (a,b) with a > 0 s.t. f(z) = flaz +b).

o1t | \
,-—-\.‘.

e at
[T}
W——0
oo

TR

a1
VN S

f /‘ \
Proof. (Of the Theorem 4.3). O

// '
/ ™~

T— We will now formalise the notion of category as well as
- : — some properties

o . . ;
5 10 15 20
Definition 4.2. Two cdf G; and G5 are in the same cate-
gory if for some constants b and a > 0, Ga(z) = G1(ax +b).

Figure 3: Gumbel
This definition implies the next few properties.

Proposition 4.5. (i) A cdf G is mazx stable if for all

To prove this result we first need some results on the
n € N*, G" and G are in the same category.

generalized inverse of growing right continuous functions.

Proposition 4.2. Let f be a growing right continuous func-
tion and f~'(y) = inf{z : f(z) > y}. (11) If the set of cdf F,, verifies Fy(anx+b,) — G1(z) and
(i) Let a > 0, b and ¢ constants and g(z) := f(ax+b) —c, Fo(ana +bn) = Go(2) with an, an >0 and if Gy, Go
then g~ (y) = a=Lf~Y(y +c) —b. are non degenerated, then they are in the same cate-
gory.
Proof. (Of the Theorem 4.1). O

(ii) If f~1 is continuous, then f~'(f(z)) = .
(i) 1f § is a non degenerated cdf and a, o > 0, b and f .1 Example 4.1. Let Xi,..., X, ~ &(0)iid. r.v. with 6 > 0.

flaz+b) = flaz + ) for allz thena = a andb=F. ¢ e "1 5
D n
A T

Proof.
From (3.1) it is natural to restrain the specification of G
to the set of cdf max stable define as follow. _ (1 _ e—e(m-s-h’T"))"
Definition 4.1 (Max stable cdf). A cdf is max stable if it o0
is non degenerated and for all k € N*| dbg, ar > 0 s.t. = <1 - )
—  A(b2).

fflagz+be) = f(z). S
4.2 Attraction domain

We know that in the additive case, most? of the densities

This definition is justified by the point (iii) of the follow-
L} 7
n—

ing theorem.

(i) A cdf f non degenerated is maz stable

Theorem 4.3.
iff A(fn)n a sequence of cdf and two sequences b, and have: Je, >0, dp € R st e (X1 +- -+ Xy —dn) -
(CLT). Hence when X € L2, we have ¢, = (axﬁ)_l and

an >0 s.t.
d, = nmx with Z ~ N(0,1).

—1 S
b —  fE(x).
Pl + bor) n—oo ¥ () For the maximum, numerous classical densities don’t
verify the attraction principle (3.1). Indeed we can take

X ~P(0) (3) for instance.
Theorem 4.6. The exists a sequence (up) and T €]0,00[

(ii) If f is maz stable, there exists real functions b(s) and
s.t. nF(uy) —— 7 iff
n—00

a(s) > 0 defined on 10, 00[ s.t.

fx) = f(a(s)z +0b(s)),
Fz) 1.

F(;zj—) =T,

forallz € R, s > 0.
(iii) If G is a non degenerated cdf then D(G) # @ iff G is B
maz stable. In this case G € D(G). With FF =1 — F the survival function.

2Those where the second order moment exists.
3This is the Poisson density.

10



In the case of integer r.v., 4(N) =1 and x,, = oo, hence

F(n)
F(n—1
F(n) -

— 1
) z—00

F(n—-1)

F(n-1) 0

=

T—0o0

Lemma 4.7. Let 7 € Ry and (u,) a sequence of real num-
bers, then

nF(u,) — 7
n— oo

&  P{M, <u,} —— .
n—oo
Proof. O
We define u,, := = + by, a, > 0, then

x
7+bn
an

P{M, <u,} = F" <

So if lim, ., % £ 1 then lim,,_,oc P{M, < up} #e 7 €
10,1[.

In the case of the Poisson density, X ~ P(0), P{X =

n} = 6’9%,
F(n)—F(n—l) B _ﬁ _o 1
F(n—1) N n! et Zk»;%
_ -1
C1+Sy
with
ekfn
2 - ¥
W k...(n+1)
9k
N = (n+k)...(n+1)
>(9) =
< () = 2= = 0.
= 9
k>1 n 1-— n
Hence £()-F(n—1) —1 # 0. Then the Poisson den-
F(n—1) n—00

sity doesn’t verify (3.1).

Corollary. Let F € D(G) with the coefficients ¢, > 0 and
dy,, for (3.1) iff

4.2.1 Attraction domain of the Frechet density

nF (L 4a,

Cn

e

n— oo

—InG(x),

for all x € R.

We recall that

1= ¢a(x)

1—exp (—x_a) Tia>0y

[e3%

T~ when x — oo.

~

So densities in its attraction domain can only be densities
which end queue are ‘“near” a power density, in a sense to
determine.

Definition 4.3 (Slow variation). A function L is said with
slow variations if for « big enough, L(z) > 0 and V¢ > 0,

Example 4.2. L(z) =C, L(z) =Inz.

Theorem 4.8. We have F' € D(¢a), a > 0 iff L(z) =
x®F(x) is with slow variations.

Moreover, if F € D(¢,) then ¢,
dn, = 0 are coefficients for (3.1).

1-1

n

(F=( ))_1 and

x

Remark. With this theorem, F' € D(¢o) = x, = oo.

- (§) " for
x > 0, then F(z) ~ Kz~ when © — oo, then we can

(Kn)~=.

Example 4.3. The Pareto density, F(z)

take ¢,

4.2.2 Attraction domain of the Weibull density
We recall

—(—=z)

Ya(7) al{z<0} + 1ie>0y-

Theorem 4.9. F € D(¢q) iff v, < oo and F (z, — 1)
x~*L(x), where L is with slow variations.

Moreover if F € D(t) then ¢, = (z, — F~'(1 - 1))
and d,, = x,, are coefficients for (3.1).

1

-1

Example 4.4. U([0,1]) = z,=1. Fl—azY) =271 =
F € D(31) and ¢, = n.

4.2.3 Attraction domain of the Gumbel density

We recall
Ax) = exp(—e™™).
Theorem 4.10. F € D(A) iff 3zg €] — 00, z,] s.t. Vo €
}mo’xub
- “g()
Fao) = ployexp ([ S0 ar)
Zxo a’(t)
where p,g are s.t. p(lr) —— p > 0, gla) —— 1,
oy, =T,
a: R — Ry is absolutely continuous with a'(x) —— 0.
I*}Iu
In this case we can choose d, = F7'(1 — 1) and ¢, =
1
a(dy)”
The reprentation of the theorem 4.10 is not unique, in

the sens that we have to make a choice for p, g.

Example 4.5 (Normal density).

11



4.2.4 Summary

Definition 4.4 (Generalized formulation). We call gener-
alized formulation the following expression of max stable
densities

- |

We can then summarise the previous theorems with this
one:

Theorem 4.11. Let U(t) = F'(1—1),t>0 et let { €R
fizxed. The three following assertions are equivalent:

(i) F € D(H)

exp (7(1 +x§)—%) if € £ 0 with 1+ &z > 0

exp(—e™7) else.

(i) Ja s.t.
F(u+wa(u)) { (1+&x)"% ifE£0
F(u) T e if €=0.
(i1i) Yo,y >0, y # 1,
U(sz) — U(s) 2=l ifE#£0
Uly) =UG) oo | me gy

5 Application to quantile calculation

The empiric quantile is very linked to the order statistic of
the observation (Xi,...,X,). To simplify we assume that
F is continuous. Hence p has no atom and P{X; = X;} =0

for i # j. Then (X ,in)) e is well defined and verifies

(1) ming X = Xl(n) <0 < XT(Ln) = maxy X ;

(i) {X, k€ [1,n]} = { Xy, k € [Ln]}.

Then F, *(a,w) = Xé:)(a k”'(i) <a< k"n(a. The

problem is when n is small and « & 1, there is a possibility
that X\ < Ja-

A solution is to use a parameter: F' € D(H¢) and with
the corollary,

nF (:c + dn>
Cn

So for u := = + d,, and n big enough,

—1

) where

e

n—roo

—In He(z).

1

Flu) & —(1+Eeu(n—dn) ¢,

so with u = ¢, and by approximating é (as well as &, and
d,,) we have

1

£én

Go dn +

((n(l ) 1).

So if we can estimate f we have a chance to estimate the
quantile.

12

5.1 Pickands estimator
5.1.1 Founding principle

Theorem 5.1. Let F' € D(He), £ € R and (ky)n a sequence
of integer numbers s.t. %" —— 0 and k,, — co. Then
n— oo n—oo

(n) (n)
& _ 1 < XDk r1 — Kok, 41 )
" o (n) (n)
In2 Xnyi2kn+1 - ani4kn+1
P

n—oo

Lemma 5.2. IfUy,...,U, @d ~ U(]0,1]) then

()

where Ty = Y | By, E; iid ~ E(1).

Ty
FTL-|-1

b

Proof. O

Lemma 5.3. Let k,, € [1,n], k, ——. Let (Vy)n>1 se-
n—r oo -
quence of r.v. @id ~ Pareto(1), then

kn V(n)

; n+l—ky,

LAY

Proof.

Proof. (of the Theorem).

5.1.2 Heuristic method
We have by definition U(z) = F~!(1 — 1), it is clear that

qa=U< )

With theorem 4.11 we know that
(U(sy) = U(s)

1
11—«

xt—1

o1 when s — 0o

. . £_
with the convention, £ =0 = =% =
’ y&—1 Iny

For a given k, the idea is then to set s :=

E—1°

1
s(1—«
k—1
n(l — a)

k
n(l — )

Q

_1
11—«

and y = 1. Then we have U(sz) = U(125) = ¢a, and then

o = o)
£
) () o ()



We are still in the heuristic method, we can then replace
U with its estimator

1
1 n
i=1

And as F;, is supposed continuous, we have F,, ( b1

):

b= So XY = Ft (L) and
n
_ p(n= k+1
" n
= Xr(zz)lfk'
This conducts to the estimator
£
_k )Y _1
- "(1*0‘)) (n) (n) (n)
o = o—¢ _1 (Xn+2—2k Xn+l k) + Xn+1—k

5.2 Peaks over threshold

Here the approach is different from the Hill and Pickands
estimators.

5.2.1 Theoretical principle
Let u be a fixed threshold, and define

Ny Card{i € [1,n], X; > u}

that represents the number over the threshold. And the cdf
of Y1,..., Yy, is given by, Vy > 0,

Fu(y) P{Y < y|X > u}

P{X —u < y|X > u}.
We can adopt a constructive approach, let

inf {¢t € [rp—1 + 1,n], Xt > u},
X,

Tk T():O

Y

— U.

And we can see that Fy, (y) F(u)
hence

=P{X <u+y and X > u},

Fu(y)F(y) Plu< X <u+y}

Fly+u) — F(u)
F(u) — F(y+u),

so finally the relation, Vy > 0, Vu € R,

Fluty) = Fu)F.(y). (5.1)
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Definition 5.1 (Generalized Pareto). We define the gen-
eralized Pareto density Ge¢g, £ € R, § > 0, the density
charaterized by the survival function

_ 2\ F .
Gep = (1+55> Liezoy + € Plie=o},

with
R, if&>0;

v€Dep = {[0,—?} if £ < 0.

Theorem 5.4. There exists a function 8: R — RY s.t

sup  |Fu(y) — Gep(y)| = 0

*)I
B2 yel0,a,—ul

iff F € D(Hg), £ € R.

Remark. If x,, = oo the convergence is uniform.

To use the result of this last theorem we need the follow-
ing proposition.

Proposition 5.5. Let the observations Yi,...,Y, i.i.d. ~
Ge¢ . Then for all uw € D¢ g,
e(u) = E[Y —u]Y >
_ 51__56“ for€ <1,
and the log likelihood
l((§76)7(Y133Y;L)) = —’I’Lh'lﬁ
— ( +1>Zl (g +1)
Proof. O
5.2.2 Heuristic
When z, = oo and u big enough, we can approximate

F, =~ GE Buw) where £ and B(u) are estimators of £ and .

We use the estimator for F),(u)
IS i Lixysuy = 2=, Hence (5.1) implies

u 2y 7%
— ([ 1+&= .
( 55)

— u, we have the estimator

(Geo-o) =)

We introduce the empirical analog of

~
~

can also

Flut+y) =~
The by setting y = ¢,

u +

f*‘r)‘\@)

How to choose u ?

e(u):
1

Ny

en(u) = Z (Xk — w)Lix, >u}-
k=1

Then we choose u so that e, (u) is more or less affine when
xr > u.



How to choose B ? é 7 We differentiate the log likelihood
and use a numerical method of resolution, e.g. Newton—
Raphson.

6 CVA (Credit Valuation Adjust-
ment) and extensions

6.1 Real contract
6.2 Construction of a replication portfolio

6.3 XVA and predefault BSDE

14



Part 111

7 Price an option

7.1 Insurer

Let’s say that I’'m an insurer, I sell the option at ¢ = 0 and
buy it at the maturity 7', hence my portfolio’s value is

Ht = C’erT - (ST—K)Jr.

7.1.1 First approach

My criteria is that I want on average IT; = 0, i.e. Ep[Il;] =0,
with PP the historical probability. We recall that under this
probability, Eple="TSt] # Sp.

Example 7.1. Assume that under P the asset drives like
ds;
St

We find then

pdt + odWy, wEr

Cc = eirTE[p [(ST — K)+}
7é CBS(S())K7T7T7 U)'

7.1.2 Second approach

Now assume that we want C' s.t. II; > 0 P-a.s., hence
C > e (Sr—K)*t

and then C = oco.

P-a.s.

7.2 Baby trader

Now we have the right to hedge but just one time at ¢t = 0,
hence I sell the option and buy A of the asset at ¢ = 0, and
at the maturity I buy the option and sell A in the asset, my
portfolio’s value is

I, cet — ASye™™ — (Sp—K)T + ASy
ce'’ — (ST—K)+ + A(ST—S()).

Remark. The trader has one parameter more than the in-
surer, its prices will then be lower.

7.2.1 Variance minimization

We still want Ep[II;] = 0, and furthermore we want to min-
imize the variance, the problem writes

Ep [I1;]

0.

min
(A,0)
s.t. Ep[l¢]=0

It’s a problem of quadratic optimisation under linear con-
straint, the solution is

Cy e "TEp [(Sr — K)T + A* (Sr — Soe™)]
e_TTEQq [(ST — K)+] ,

where Q7 s.t. Ega [e*”TST] =S.
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7.2.2 Super replication

Let’s assume that I never want to loose money, hence the
problem writes

Csup min{C : JA s.t. II; >0 P-as.}.

But II; is piecewise, then the optimum is reached on edges,

II; >0 P-as.
Ce™ — ASge™™ > 0 (St =0)
& A—-1 >0 (ST = 0)
ceT + A (K — Soe’"T) > 0 (St = K).

It’s a linear programming problem (simplex), and we find
A =1, Coyp = So.

Dual problem Now let us see the problem in its dual
form. First we can write the problem as

Osup

min max C +

—rT o +
(C,A) q(8)=0 /q(dS) (6 S
+ A(SeT = Sp) = C).

Theorem 7.1 (Minimax). Let X C R™ and Y C R™ be
compact conver sets. If f : X xY — R is a continuous
function that is convexr—concave, then we have that

max min f(z,y).

mlnma}}/{f(x,y) T UEY eex

zeX ye

Hence we have

— 3 —rT _ +
Coup = max min €'+ / q(dS) (e (S ~ K)
+ A(SemT — 8) - C).
We see that the min according to C is like
C(1—e™ [q(ds)), then we want [g(ds)e™” = 1. For

A as well we have [g¢(ds)e™ (Se=™" —Sy) = 0. Then
there is a probability Q s.t.

Eg[1] 1 (7.1)
Eg [Sre™™] = S, (7.2)
So finally
Cop = max Bq [e7 (ST — K)*]
where
M; = {Q~P st (7.1) and (7.2)}.

Remark. Then the martingale property comes from the dual
form of the problem.

Proposition 7.2. If M; = @, then Csyp = —00 and there
an arbitrage opportunity.

Remark. Cgyp, = max{C : 3A s.t. II; >0 P-as.}.



Theorem 7.3. The price of the option C' is without arbi-

trage iff
Csub < C < C'sup'

Theorem 7.4. If there exists a replication strategy, Csap =
C = Cqup-

Theorem 7.5. There exists a probability Q* € M s.t.

C = e Eqg [(Sr—K)T].

7.3 Real trader

We suppose to simplify that » = 0, but the following results
are true with r # 0.
Now we can hedge are any time, such that

0, = C - (Si—K)" + > Af(Sii1—S)).

i=1

Hence with the same calculus than previously we find

Coup = @Seljan Eg [(ST — K)+] ,
where
M, = {Q~P, E[S|S1,...,Si—1]=Si-1}.
And then
C = Eg[(Sr-K)], Q €M,

7.4 Trader M2

Now n — o0,

I, = C — (Sp—K)* + /OTAtdSt.
So we have
Cowp = sup Fq [(S7 = K)*]
with
My = {Q~P, whereS is a Q-martingale}.

Let’s assume we know that the dynamic is dS‘ = pdt +
o dWi, hence C = Eq-[(S7 — K)T], Q* € Mo " But in fact
with price unicity we have Mo, = {QP5} where under this
probability <z dsf = odW;.

Remark. If we have dSt’ = pudt + oy dW; with oy a stochastic
control, M, is not just one point.

Now we say that we want C, A s.t. II; = 0 P-a.s. So
Ansatz: C = u(0,5p), A¢ = 9su(t,St) where u is solution
of

O + %02525%1& =0
U(T,ST) = (ST—K)+.
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We verify, with 1to,

1L

7.5

= U(O,SQ) + U(T,ST) - U(O,So)

T
— / (&u—k;gQSzﬁéu) dt — (Sp — K)*
0

=0

Model independent option



