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Part I

1 Monetary risk measures

1.1 Introduction

We want to measure the risk associated to a given portfolio.
We assume that X : Ω→ R is a function that describes the
value of the portfolio at a certain time horizon and given a
management rule, on the sceanario ω ∈ Ω.

We want to define a function ρ(X) s.t.

(i) the position X is acceptable1 if ρ(X) ≤ 0 ;

(ii) if ρ(X) > 0, then ρ(X) is the minimal capital require-
ment, i.e. the minimal amount of cash to add to the
portfolio so that he becomes acceptable.

1.2 Risk measures and set of acceptable po-
sitions

Let Ω describe the space of scenarios and X : Ω → R the
updated portfolio value. Assume that ∃M > 0, ∀ω ∈ Ω,
|X(ω)| ≤ M . We note X := {X : Ω → R, X bounded} the
vector space of bounded functions.

Definition 1.1 (Risk measure). The function ρ : X → R is
a risk measure if;

(i) X,Y ∈ X s.t. X ≤ Y , ρ(X) ≥ ρ(Y ) (monotony);

(ii) ∀X ∈ X , ∀m ∈ R, ρ(X +m) = ρ(X)−m (cash invari-
ance) ;

(iii) ρ(0) = 0 (normalization).

Remark. The cash invariance property enables us to see
ρ(X) as the minimal capital requirement, indeed

ρ(X + ρ(x)) = ρ(X)− ρ(X) = 0.

And ∀m ≥ ρ(X), ρ(X +m) = ρ(X)−m ≤ 0.

For a given risk measure ρ we define

Aρ := {X ∈ X , ρ(X) ≤ 0}

the set of acceptable positions.

Proposition 1.1. We have the following properties:

(i) if X ∈ Aρ and Y ∈ X s.t. X ≤ Y , then Y ∈ Aρ ;

(ii) inf{m ∈ R : m ∈ Aρ} = 0

Proposition 1.2 (Lipschitz property). If ρ is a risk mea-
sure, then ∀X,Y ∈ X , |ρ(X)− ρ(Y )| ≤ ‖X − Y ‖∞.

Proof.

X ≤ Y + ‖X − Y ‖∞
⇔ ρ(X) ≥ ρ(Y + ‖X − Y ‖∞)

⇔ ρ(X) ≥ ρ(Y )− ‖X − Y ‖∞
⇔ ρ(X)− ρ(Y ) ≥ −‖X − Y ‖∞

We show the same way that ρ(X)−ρ(Y ) ≤ ‖X−Y ‖∞.

Definition 1.2 (Convexity). A risk measure ρ is said con-
vex if ∀X,Y ∈ X , ∀λ ∈ [0, 1], ρ(λX + (1 − λ)Y ) ≤
λρ(X) + (1− λ)ρ(Y ).

Remark. The interest of a convex risk measure is that it
takes into account protfolio diversification. Indeed sup-
pose X,Y ∈ X with ρ(X) = ρ(Y ), then for all λ ∈ [0, 1],
ρ(λX + (1− λ)Y ) ≤ ρ(X).

Remark. If ρ is convex, ψ(n) = ρ(nX) is also convex, and
in particular n 7→ ρ((n + 1)X) − ρ(nX) is growing with n.
Which is desirable because for liquidity reasons it is riskier
to buy the 1000-th equity than the first one.

Definition 1.3 (Positive homogeneity). A risk measure
ρ is said positively homogeneous if ∀λ > 0, ∀X ∈ X ,
ρ(λX) = λρ(X).

We say that a risk measure is consistent if it is a convex
and positively homogeneous risk measure.

Example 1.1. Let (Ω,F ,P) be a probability space.

ρ(X) := E[−X] , X ∈ X ,

is a consistent risk measure.

Example 1.2. ρ(X) = E[−X] + α
√

Var[X], for α > 0,
is not monotonic. Indeed if X

µ ∼ B(p), ρ(X) = −µp +

αµ
√
p(1− p).

1.3 Value-at-Risk (VaR)

We fixe a threshold λ ∈]0, 1[. We say that a position
X : Ω→ R is acceptable if

P{X < 0} ≤ λ.

Definition 1.4 (Value-at-Risk). We can then define the
VaR,

VaRλ(X) := inf {m ∈ R : P{X +m < 0} ≤ λ} .

Proposition 1.3. The VaR is consistent a risk measure.

Proof. (i). If X ≤ Y , {m ∈ R,P{X + m < 0} ≤ λ} ⊂
{m ∈ R,P{Y +m < 0} ≤ λ}, follows by taking the infimum
Varλ(X) ≥ Varλ(Y ).

1From a regulatory point of view.
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(ii). Let m′ ∈ R,

VaRλ(X +m′) = inf {m ∈ R : P{X +m′ +m < 0} ≤ λ}
= inf {m′′ ∈ R : P{X +m′′ < 0} ≤ λ}

− m′ , with m′′ := m+m′

= VaRλ(X) − m′.

(Positive homogeneity). Let α > 0, X ∈ X ,

VaRλ(αX) = inf {m ∈ R : P{αX +m < 0} ≤ λ}
= α inf {m′ ∈ R : P{X +m′ < 0} ≤ λ}

with m′ :=
m

α
= αVaRλ(X).

Remark. The VaR is not convex.

Example 1.3. (Ω,F) is a probability space. Let Q be the
set of all probability measures on (Ω,F). Define γ : Q → R
s.t. supQ∈Q γ(Q) = 0. We define

ρ(X) = sup
Q∈Q

(γ(Q)− EQ[X]).

If Q = {P} we find the previous exemple E[−X]. And ρ is
a convex risk measure.

1.4 Characterization of risk measures with
set of acceptable positions

Definition 1.5. A ⊂ X is a set of acceptable positions if:

(i) A 6= ∅ and inf{m ∈ R,m ∈ A} = 0 ;

(ii) X ∈ A, Y ∈ X s.t. X ≤ Y then, Y ∈ A.

If ρ is a risk measure, Aρ is a set of acceptable positions.
Reciprocally if A is a set of acceptable positions, then

ρA := inf{m ∈ R, X +m ∈ A} , X ∈ X ,

is a risk measure.

Proof. (i). If X ≤ Y , X + m ∈ A ⇒ Y + m ∈ A, so
ρA(X) ≥ ρA(Y ).

(ii). If X ∈ X , m′ ∈ R,

ρA(X +m′) = inf{m ∈ R, X +m′ +m ∈ A}
= inf{m′′ ∈ R, X +m′ ∈ A} − m′

with m′′ := m′ +m

= ρA(X) − m′.

Proposition 1.4. If ρ is a risk measure, ρ = ρAρ . In par-
ticular ρ1 = ρ2 ⇔ Aρ1 = Aρ2 .

Proof. Let X ∈ X ,

ρAρ(X) = inf{m ∈ R, X +m ∈ Aρ}
= inf{m ∈ R, ρ(X +m) ≥ 0}
= inf{m ∈ R, ρ(X)−m ≥ 0}
= ρ(X).

Proposition 1.5. We have the following properties:

(i) ρ is convex ⇔ Aρ is convex ;

(ii) ρ is positively homogeneous ⇔ Aρ is a cone.

1.5 Expected Shortfall (ES)
Let (Ω,F ,P) be a space probability.

Definition 1.6 (Quantile). If X : Ω → R a r.v., we say
that q ∈ R is the λ-order quantile with λ ∈ [0, 1] s.t.
P{X < q} ≤ λ and P{X ≤ q} ≥ λ.

We also set

q−X(λ) = sup{x ∈ R,P{X < x} < λ}
= inf{x ∈ R,P{X ≤ x} ≥ λ}

q+
X(λ) = inf{x ∈ R,P{X ≤ x} > λ}

= sup{x ∈ R,P{X < x} ≤ λ}.

So VaRλ(X) = −q+
X(X) = q−−X(1− λ).

We saw that the VaR is not convex. We will see that the
Expected Shortfall is more restrictive than the VaR and is
convex.

Definition 1.7 (Expected Shortfall). Let λ ∈ [0, 1], X ∈ X ,
we define the ES associated to the threshold λ,

ESλ(X) :=
1

λ

∫ λ

0

VaRα(X) dα

= − 1

λ

∫ λ

0

q+
X(α) dα

Remark. On the other hand q+
X ↗ and q+

X(α) ≤ q+
X(λ)

for all α ∈]0, λ]. So ES is always defined and ESλ(X) ≥
1
λ

∫ λ
0

VaRλ(X)dα = VaRλ(X).
Remark. If X is integrable, ES < ∞. Let U ∼ U([0, 1]),
q+
X(U) ∼ X. So E[|X|] =

∫ 1

0
|q+
X(u)|du <∞.

We also have E[−q+
X(U) | U ≤ λ] = 1

λ

∫ λ
0
−q+

X(u)du =

ESλ(X). If X has a density, q+
X is bijective and

E[−q+
X(U) | U ≤ λ] = E[−X | −X ≥ VaRλ(X)].

Proposition 1.6. Assume that X is integrable, λ ∈ [0, 1],
and q is the λ-order quantile of X, then

ESλ(X) =
1

λ
E[(q −X)+] − q.
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Proof.

ESλ(x) , − 1

λ

∫ λ

0

qX(u) du

=
1

λ

∫ λ

0

(
q − q+

X(u)
)

du − q

=
1

λ

∫ 1

0

(
q − q+

X(u)
)
1{u<λ} du − q

=
1

λ
E
[
(q −X)+

]
− q

as q+
X(U) ∼ X when U ∼ U([0, 1]) and q+

X(λ) = q.

2 Introduction to the Fenchel–
Legendre transform

2.1 Recall on topology
Definition 2.1 (Topology). Let X be a space. T is a topol-
ogy on X if T ⊂ P(X ) verifies:

(i) ∅,X ∈ T ;

(ii) all subset of elements of T is in T , i.e. ∀θ ∈ Θ s.t.
Aθ ∈ T ,

⋃
θ∈ΘAθ ∈ T ;

(iii) if A1, . . . , An ∈ T then
⋂n
i=1Ai ∈ T .

The elements of T are called open set of X ; A ⊂ X is a
closed set if X\A ∈ T .

Definition 2.2 (Topology space). Consider X with a topol-
ogy T , then (X , T ) is a topology space.

Definition 2.3 (Hausdorff space). A topology space (X , T )
is a Hardoff space if

(i) ∀x ∈ X , {x} is a closed set for T ;

(ii) ∀x, y ∈ X , x 6= y, ∃Ox, Oy ∈ T s.t. x ∈ Ox, y ∈ Oy,
Ox ∩Oy = ∅.

Definition 2.4 (Base). A set B ⊂ T is a base for the topol-
ogy T if ∀A ∈ T , ∃(Bθ)θ∈Θ ∈ (B)Θ s.t. A =

⋃
θ∈ΘBθ.

Definition 2.5 (Compact space). A set A ⊂ X is a com-
pact space if for all covering of A, one can extract a finite
sub-covering, i.e. A ⊂

⋃
θ∈ΘBθ, Bθ ∈ T for all θ ∈ Θ, then

∃n ∈ N∗, θ1, . . . , θn ∈ Θ s.t. A ⊂
⋃n
i=1Bθi .

Theorem 2.1 (Bolzano–Weierstrass). Let A be a compact
space and (xn)n∈N ∈ AN, then ∃ϕ s.t. (xϕ(n)) has a limit.

If x ∈ X , we call neighbourhood of x all opened space
including x. We say that (xn)n ∈ XN, xn −−−−→

n→∞
x if ∀V

neighbourhood of x, ∃N , ∀n ≥ N , xn ∈ V .
Let f : (X , T ) → (X̃ , T̃ ) be continuous if ∀θ̃ ∈ T̃ ,

f−1(θ̃) ∈ T .
A function f : (X , T ) → R is lower semi-continuous

(l.s.c.) if ∀c ∈ R, {x ∈ X , f(x) > c} ∈ T .

Proposition 2.2. If f is l.s.c. and xn → x then,

lim inf
n→∞

f(xn) ≥ f(x).

Proof. Let ε > 0, {y ∈ X , f(y) > f(x) − ε} is an open set
including x. So ∃N , ∀n ≥ N , f(xn) ≥ f(x) − ε, and so
lim infn f(xn) ≥ f(x)− ε.

Consequently if f is l.s.c., F a closed set and F ⊂ K
where K is a compact space. Then ∃x ∈ F s.t. f(x) =
infy∈F f(y).

If (fθ)θ∈Θ is a set of l.s.c. functions, fθ : X → R, then
supθ fθ is l.s.c.

Definition 2.6 (Topological vector space). (X , T ) is a topo-
logical vector space if X is a R-v.s. and

(i) (X , T ) is a Hausdorff space ;

(ii) (x, y) ∈ X × X 7→ x+ y ∈ X is C0 ;

(iii) (λ, x) ∈ R×X 7→ λx ∈ X is C0.

Theorem 2.3 (Hahn–Banach). Let (X , T ) be a topological
v.s. locally convex. Let K,C ∈ X two convex sets s.t.

(a) K is a compact space ;

(b) C is a closed set et K ∩ C = ∅.

Then there exists l : (X , T )→ R linear and C0 s.t.

sup
x∈C

l(x) < inf
x∈K

l(x).

2.2 Fenchel–Legendre transform

Proposition 2.4. Let (X , T ) and (X ′, T ′) be two topologi-
cal v.s. locally convex and a bilinear form

X × X → R
(x, x′) 7→ 〈x, x′〉 ,

s.t. ∀x′ ∈ X ′, x 7→ 〈x, x′〉 is linear and C0 and ∀x ∈ X ,
x′ 7→ 〈x, x′〉 is linear and C0. And assume that l : X → R is
linear and C0. Then

∃x′ ∈ X ′ / ∀x ∈ X , l(x) = 〈x, x′〉.

Definition 2.7 (Convex function). A function f : X → R
is convex if its epigraph is a convex set. With

epif = {(x, α) ∈ X × R, f(x) ≤ α}.

Example 2.1. x 7→ x2 is convex.
But also f s.t.

f(x) =

{
−∞ if x ∈]a, b]
+∞ else ,

with a < b.
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Definition 2.8 (Effective domain). We call effective do-
main of a convex function f the set

domf = {x ∈ X , f(x) <∞}.

It’s a convex set.

Proposition 2.5. If (fθ)θ∈Θ is a set of convex functions,
then supθ fθ is a convex function.

Proof. Indeed,

epi sup
θ
fθ = {(x, α) ∈ X × R, sup

θ
fθ(x) ≤ α}

=
⋂
θ∈Θ

{(x, α) ∈ X × R, fθ(x) ≤ α} ,

is convex as intersection of convex sets.

Lemma 2.6. If f : X → R is l.s.c., epif is a closed set.

Proof.

(epif)C = {(x, α) ∈ X × R, f(x)− α > 0}
=

⋃
c1+c2=0

{x ∈ X , f(x) > c1}︸ ︷︷ ︸
open

×{α ∈ R, −α > c2}︸ ︷︷ ︸
open

.

So (epif)C is an open set.

Proposition 2.7. If f : X → R is convex and l.s.c. s.t.
∃x, f(x) = −∞, then ∀x ∈ X , f(x) ∈ {−∞,+∞}.

Proof. Let y ∈ X , f(y) = −∞ and y ∈ domf . If y ∈ domf ,

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y) = −∞ ,

for λ ∈ [0, 1[. Now let λn ↓ 0 and f is l.s.c. so

f(y) ≤ lim inf f(λnx+ (1− λn)y) = −∞.

Proposition 2.8. Let f : X → R ∪ {∞} a convex function
l.s.c. then

f(x) = sup
x′∈X
α∈R

∀x̃, 〈x̃,x′〉−α≤ f(x̃)

〈x, x′〉 − α.

Proof.

Definition 2.9 (Legendre transform). Let f : X → R. One
defines its Legendre transform by

f∗ : X ′ → R
x′ 7→ sup

x∈X
〈x, x′〉 − f(x).

f∗ is convex l.s.c. as supremum of convex l.s.c. functions.

So,

f∗∗(x) = sup
x′∈X ′

〈x, x′〉 − f∗(x′)

≤ f(x).

Theorem 2.9. If f : X → R ∪ {∞} is convex l.s.c., then
f∗∗(x) = f(x).

Example 2.2. With X = R, we have x 7→ x2

2 and x 7→ ax.

Remark. f∗∗ is the convex hull of f .

2.3 Exemples of dual spaces
2.3.1 Spaces Lp and Lq

Let (Ω,F ,P) be a probability space. And p ∈ [1,∞[,
q ∈]1,∞] s.t. 1

p + 1
q = 1 or p = 1 and q =∞.

For p ∈ [1,∞[ we define

Lp = {X : Ω→ R measurable / E[|X|p] <∞} ,

and

L∞ = {X : Ω→ R meas. / ∃M > 0, P{|X| ≤M} = 1}.

With these definitions we set

‖X‖p = E [|X|p]
1
p ;

‖X‖∞ = inf{M > 0, P{|X| ≤M} = 1}.

(Lp, ‖ · ‖p) and (L∞, ‖ · ‖∞) are Banach spaces.

Theorem 2.10. Let p ∈ [1,∞[ and l : Lp → R is a linear
C0 function iff ∃Y ∈ Lq / ∀X ∈ Lp, l(X) = E[XY ] and Y
is unique P-a.s.

Consequently with p ∈ [1,∞[, q ∈]1,∞] s.t. 1
p + 1

q = 1

or p = 1 and q = ∞. And with X = Lp, X ′ = Lq,
〈X,X ′〉 = E[XX ′] a bilinear C0 form. If f : Lp → R is
convex l.s.c. according to the topology of the norm ‖ · ‖p
then for all X ∈ Lp,

f(X) = sup
X′∈Lq

E[XX ′]− f∗(X ′)

= f∗∗(X) ,

where f∗(X) = supX∈Lp E[XX ′]− f(X), X ′ ∈ Lq.

2.3.2 Duality L∞/L1

The Theorem 2.10 assures that L∞ is the topological dual
of L1, i.e. l : L1 → R linear C0, ∃Y ∈ L∞, ∀X ∈ Lp,
l(X) = E[XY ]. But L1 is not the dual of L∞.

But if Y ∈ L1 and X ∈ L∞, |E[XY ]| ≤ ‖X‖∞‖Y ‖1,
then ∀Y ∈ L1, X 7→ E[XY ] is C0 for the norm ‖ · ‖∞.

We will equip L∞ of an other topology, the weak ∗ topol-
ogy, that we note σ(L∞, L1), which is engendered by the
base

{Y ∈ L∞ / ∀i ∈ J1, nK, |E[XiX]− E[XiY ]| < r}.
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With this definition (Xp)p∈N ∈ (L∞)N converges weakly ∗
towards X ∈ L∞ if ∀Z ∈ L1, E[XpZ] −−−→

p→∞
E[XZ].

We admit that (L∞, σ(L∞, L1)) is locally convex and L1

is the dual of this space. Then l : L∞ → R is linear and C0

for σ(L∞, L1) iff ∃Y ∈ L1, ∀X ∈ L∞, l(X) = E[XY ].

2.3.3 Duality of measurable functions – Finite ad-
ditive measures

Let (Ω,F) be a measurable space. And define

X = {F : (Ω,F)→ R, measurable bounded ∀ω ∈ Ω}.

For F ∈ X we set ‖F‖ := supω∈Ω |F (ω)|. (X , ‖ · ‖) is a
Banach space.

Definition 2.10 (Finite additivity). The application µ :
F → R if finite additive if

(i) µ(∅) = 0 ;

(ii) ∀n ∈ N∗, A1, . . . , An ∈ F disjointed, µ (
⋃n
i=1Ai) =∑n

i=1 µ(Ai).

Definition 2.11 (Total variation). The total variation of a
measure (or finite additive function) is defined by:

‖µ‖TV = sup

{
n∑
i=1

|µ(Ai)|, n ∈ N∗, A1:n ∈ F disjointed

}
Definition 2.12 (Bounded additive). We note

ba(Ω,F) = {µ : F → R finite additive / ‖µ‖TV <∞} ,

and

M1,f (Ω,F) = {µ ∈ ba(Ω,F) / µ ≥ 0, µ(Ω) = 1}.

Remark. If µ is a probability measure on (Ω,F) then µ ∈
M1,f (Ω,F).

Let F ∈ X be a simple function i.e.

F (ω) =

n∑
i=1

αi1Ai(ω) ,

with A1, . . . , An ∈ F disjointed. We then define∫
F dµ =

n∑
i=1

αiµ(Ai).

Theorem 2.11. l : X → R linear and continuous iff
∃µ ∈ ba(Ω,F) s.t. ∀F ∈ X , l(F ) =

∫
F dµ.

Consequently with X = {X : (Ω,F) →
R bounded measurable} and X ′ = ba(Ω,F). Let X ∈ X ,
µ ∈ X ′, 〈X,µ〉 =

∫
X dµ. If f : X → R convex l.s.c. for

‖ · ‖ then

f(X) = f∗∗(X)

= sup
µ∈ba(Ω,F)

∫
X dµ − f∗(µ) ,

where f∗(µ) = supX∈X
∫
X dµ− f(X).

3 Risk measure representation

The objective of this section is to show that any convex
risk measure ρ : X → R with X := {F : (Ω,F) →
R measurable bounded} can be written as:

ρ(X) = sup
Q∈M1,f

EQ[−X]− α(Q) ,

whereM1,f := {µ finite additive / µ ≥ 0, µ(Ω) = 1}. And
we note for µ ∈ M1,f , x ∈ X ,

∫
Xdµ = Eµ[X] and α :

M1,f → R+ is a penalty function s.t. infQ∈M1,f
α(Q) = 0.

We will say that a risk measure is represented by a
penalty function α if:

ρ(X) = sup
Q∈M1,f

EQ[−X]− α(Q).

Then we will refine this representation result by making
more assumptions on ρ.

Theorem 3.1. Let (Ω,F) be a measurable space, X := {F :
(Ω,F) → R measurable bounded}. Then any convex risk
measure ρ : X → R can be written as

ρ(X) = max
Q∈M1,f

EQ[−X]− αmin(Q) ,

for X ∈ X , where αmin(Q) = supX∈Aρ EQ[−X], Q ∈M1,f .

Besides, αmin is the lowest penalty function that rep-
resents ρ, i.e. if ρ(X) = supQ∈M1,f

EQ[−X] − α(Q) then
∀Q ∈M1,f , α(Q) ≥ αmin(Q).

Proof.

When the risk measure is consistent, αmin has an ele-
mentary form.

Corollary. If ρ : X → R is a consistent risk measure,
∀Q ∈ M1,f , αmin(Q) ∈ {0,∞} and we note Qmax := {Q ∈
M1,f , αmin(Q) = 0}. Then ρ(X) = maxQ∈Qmax EQ[−X]
and Qmax is the biggest set Q s.t. ρ(X) = supQ∈Q EQ[−X].

Proof. ρ is consistent so ∀λ > 0, X ∈ X , ρ(λX) = λρ(X).
And X is a vector space so X ∈ X iff λX ∈ X .

αmin(Q) = sup
X∈X

E[−λX]− ρ(λX)

= λ sup
X∈X

E[−X]− ρ(X)

= λαmin(Q).

And this for all λ > 0, so αmin(Q) ∈ {0,∞}.
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3.1 Convex risk measures in L∞(Ω,F ,P)

Let (Ω,F ,P) be a probability space. We are looking at the
risk measures ρ : X → R s.t. ρ(X) = ρ(Y ) if X = Y a.s.

Hence we can see ρ as a function of L∞ to R. We note

M1,f (P) := {Q ∈M1,f , Q� P} ;

M1(P) := {Q ∈M1, Q� P}.

Where Q� P if ∀A ∈ F , P(A) = 0 ⇒ Q(A) = 0.

Lemma 3.2. If ρ is a convex risk measure represented by
α : M1,f → [0,∞] and s.t. ρ(X) = ρ(Y ) if X = Y a.s.
Then α(Q) =∞ for Q ∈M1,f \M1,f (P)

Proof.

If we want to have a risk measure from a penalty func-
tion α s.t. α(Q) =∞ if Q ∈M1,f \M1 we have have more
hypothesis on ρ ; typically properties on the convergence.

We will now work with X = L∞(Ω,F ,P).

Theorem 3.3. Let ρ : L∞ → R be a convex risk measure.
Define αmin(Q) = supX∈Aρ EQ[−X] and Q ∈M1(P). Then
the following conditions are equivalent

(i) ρ is l.s.c. according to the weak∗ topology σ(L∞, L1) ;

(ii) ρ(X) = supQ∈M1(P) EQ[−X]− αmin(Q) ;

(iii) ρ is C0 from above, i.e. if Xn
a.s.−−→ X and P{Xn ≤

Xn+1} = 1 then ρ(Xn) −−−−→
n→∞

ρ(X) ;

(iv) ρ satisfies the Fatou property, i.e. if ∀(Xn)n ∈ (L∞)N,
Xn

a.s.−−→ X, ∃M , ‖X‖∞ ≤ M , then lim infn ρ(xn) ≥
ρ(X).

In this case αmin is the lowest penalty function α :M1(P)→
[0,∞] s.t. ρ(X) = supQ∈M1(P) EQ[−X]− α(Q).

Proof.

3.2 Invariant distribution risk measures
We now focus on risk measures s.t. ρ(X) = ρ(Y ) if X and
Y have the same distribution under P. This hypothesis is
reasonable as we give the same risk to two portfolios that
have the same distribution.

It is clear that VaRλ and ESλ are invariant according
to the distribution. We will show that the representation
of convex risk measures that are invariant according to the
distribution is made of an elementary piece that is ESλ.

In this paragraph we will need the technical hypothesis:
∃U ∈ L∞(Ω,F ,P) s.t. U ∼ U([0, 1]) under P.

Lemma 3.4. Let X ∈ L∞, Y ∈ L1. We define qX(λ) =
q+
X(λ) and qY (λ) = q+

Y (λ). Then

sup
X̃∼X

E[X̃Y ] = sup
Ỹ∼Y

E[XỸ ]

=

∫ 1

0

qX(λ)qY (λ) dλ.

Remark. If we take X̃ = qX(U), Ỹ = qY (U) and U ∼
U([0, 1]), then

E[X̃Ỹ ] =

∫ 1

0

qX(λ)qY (λ) dλ.

Theorem 3.5. Any distribution invariant risk measure sat-
isfies the Fatou property.

Theorem 3.6. Let ρ : L∞ → R be a convex risk measure
and that is invariant according to the distribution. Then,

ρ(X) = sup
Q∈M1(P)

∫ 1

0

qX(λ)q dQ
dP

(λ) dλ − αmin(Q) ,

with

αmin(Q) = sup
X∈Aρ

∫ 1

0

q−X(λ)q dQ
dP

(λ) dλ

= sup
X∈X

∫ 1

0

q−X(λ)q dQ
dP

(λ) dλ − ρ(X).

Proof.

Corollary. If ρ is a convex risk measure and that is invari-
ant according to the distribution,

ρ(X) = sup
µ∈M1(]0,1]

∫
]0,1]

ESλ(X)µ(dλ)− βmin(µ) ,

where βmin(µ) = supX∈Aρ
∫

]0,1]
ESλ(X)µ(dλ).

In particular if ρ is consistent, βmin = {0,∞},

ρ(X) = sup
µ∈M1(]0,1]

µ / βmin(µ)<∞

∫
]0,1]

ESλ(X)µ(dλ)

Example 3.1. We have the following:

• Let
β(µ) =

{
0 if µ = δλ
∞ else

Then ρ(X) = ESλ(X).

• Let

β(µ) =

{
0 if µ =

∑n
i=1 piδλi

∞ else

where
∑
i pi = 1, pi > 0, λi ∈]0, 1]. Then ρ(X) =∑n

i=1 piESλi(X).

• Let

β(µ) =

{
βi if µ = µi, i ∈ J1, nK
∞ else

where µi =
∑n
j=1 qijδλij ,

∑
qij = 1, qij ≥ 0, λij ∈

]0, 1] and mini βi = 0. Then

ρ(X) = max
i∈J1,nK

n∑
j=1

qijESλij (x) − βi.
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Part II

Notations We consider X1, . . . , Xn i.i.d. r.v. of density
µ. In this course X represents a loss. The question is how
can one estimate a quantile qα with α ∈]0, 1[ ?

Let F be the cdf associated to µ:

qα = F−1(α)

= inf{x : F (x) ≥ α}.

In the rest of the course we note F̄ = 1− F .

Non-parametric approach Let us replace F with Fn :=
1
n

∑n
i=1 1{Xi≤x}. The problem that we could meet is when

we don’t have a lot of observations, because α ≈ 1, so it is
possible that Mn := maxiXi < qα.

So this method theoretically robust suffers from the sam-
ple size.

Parametric approach We suppose that we know µ but
it depends on unknown parameters. Indeed, ∀x ∈ R,

P{Mn ≤ x} = F (x)n.

Let us define

xµ := sup{x : F (x) < 1} ≤ ∞

so for all x ∈]−∞, xµ[, P{Mn ≤ x} = F (x)n −−−−→
n→∞

0.

If xµ < ∞, for all x ∈ [xµ,∞[, P{Mn ≤ x} = 1. So for
all ε > 0,

P{Mn ≤ xµ − ε} −−−−→
n→∞

0

P{Mn > xµ + ε} = 1− F (xµ + ε)n = 0

and soMn
P−→ xµ. And asMn ↑M∞, we have a.s. M∞ = xµ

a.s. and so Mn
a.s.−−→ xµ.

It is then obvious to see the speed of convergence.
Putting aside the fact that xµ = ∞ this is equivalent to
look for to sequences (cn)n, (dn)n with cn > 0 s.t.

cn(Mn − dn)
L−→ H , (3.1)

where H is characterised by it cdf. We have (3.1) which is
equivalent to

P{cn(Mn − dn) ≤ x} = Fn(c−1
n x+ dn)

−−−−→
n→∞

G(x).

This limit is a punctual limit and is expressed thanks to the
convergence on the continuous points of G. We will then
say that F ∈ D(G) which is the attraction domain of G.

4 Extreme value theory

4.1 Extreme values categories

The goal of this section is to prove the following result

Theorem 4.1 (Extreme value). If there exists two se-
quences cn > 0 and dn verifying (3.1) with G non degen-
erated (i.e. 6= 1{X≥x0}) then G is in one of the following
extreme value categories: G ∈ {φα, φα,Λ}. With

• Frechet: φα(x) = exp(−x−α)1x>0 (α > 0).

• Weibull: ψα(x) = exp(−(−x)α)1x≤0 + 1x>0 (α > 0).

• Gumbel: Λ(x) = exp(−e−x).

Inversely every category can be obtained as limit of (3.1).

The next three figures are showing the density function
of the categories.

Figure 1: Frechet

Figure 2: Weibull
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Figure 3: Gumbel

To prove this result we first need some results on the
generalized inverse of growing right continuous functions.

Proposition 4.2. Let f be a growing right continuous func-
tion and f−1(y) = inf{x : f(x) ≥ y}.

(i) Let a > 0, b and c constants and g(x) := f(ax+b)−c,
then g−1(y) = a−1f−1(y + c)− b.

(ii) If f−1 is continuous, then f−1(f(x)) = x.

(iii) If f is a non degenerated cdf and a, α > 0, b and β s.t.
f(ax+ b) = f(αx+β) for all x then a = α and b = β.

Proof.

From (3.1) it is natural to restrain the specification of G
to the set of cdf max stable define as follow.

Definition 4.1 (Max stable cdf). A cdf is max stable if it
is non degenerated and for all k ∈ N∗, ∃bk, ak > 0 s.t.

fk(akx+ bk) = f(x).

This definition is justified by the point (iii) of the follow-
ing theorem.

Theorem 4.3. (i) A cdf f non degenerated is max stable
iff ∃(fn)n a sequence of cdf and two sequences bn and
an > 0 s.t.

f(a−1
nkx+ bnk) −−−−→

n→∞
f

1
k (x).

(ii) If f is max stable, there exists real functions b(s) and
a(s) > 0 defined on ]0,∞[ s.t.

f(x) = fs(a(s)x+ b(s)) ,

for all x ∈ R, s > 0.

(iii) If G is a non degenerated cdf then D(G) 6= ∅ iff G is
max stable. In this case G ∈ D(G).

Lemma 4.4. Let f be a non degenerated cdf and fn a se-
quence of cdf. Define the sequences bn and an > 0 s.t.
fn(anx + bn) → f(x). Then ∃f̃ a non degenerated cdf and
two sequences ãn > 0, b̃n s.t. fn(ãnx+ b̃n)→ f̃(x) iff

ãn
an

−−−−→
n→∞

a and

b̃n − bn
an

−−−−→
n→∞

b

for a given couple (a, b) with a > 0 s.t. f̃(x) = f(ax+ b).

Proof. (Of the Theorem 4.3).

We will now formalise the notion of category as well as
some properties

Definition 4.2. Two cdf G1 and G2 are in the same cate-
gory if for some constants b and a > 0, G2(x) = G1(ax+ b).

This definition implies the next few properties.

Proposition 4.5. (i) A cdf G is max stable if for all
n ∈ N∗, Gn and G are in the same category.

(ii) If the set of cdf Fn verifies Fn(anx+ bn)→ G1(x) and
Fn(αnx+ bn)→ G2(x) with an, αn > 0 and if G1, G2

are non degenerated, then they are in the same cate-
gory.

Proof. (Of the Theorem 4.1).

Example 4.1. LetX1, . . . , Xn ∼ E(θ) i.i.d. r.v. with θ > 0.
So for all x ≥ 0,

P
{
Mn −

lnn

θ
≤ x

}
= P

{
X1 −

lnn

θ
≤ x

}n
=

(
1− e−θ(x+ lnn

θ )
)n

=

(
1− e−θx

n

)
−−−−→
n→∞

Λ(θx).

4.2 Attraction domain
We know that in the additive case, most2 of the densities
have: ∃cn > 0, dn ∈ R s.t. cn(X1 + · · ·+Xn− dn)

L−−−−→
n→∞

Z

(CLT). Hence when X ∈ L2, we have cn = (σX
√
n)
−1 and

dn = nmX with Z ∼ N (0, 1).
For the maximum, numerous classical densities don’t

verify the attraction principle (3.1). Indeed we can take
X ∼ P(θ) (3) for instance.

Theorem 4.6. The exists a sequence (un) and τ ∈]0,∞[
s.t. nF̄ (un) −−−−→

n→∞
τ iff

F̄ (x)

F̄ (x−)
−−−−→
x→xµ

1.

With F̄ = 1− F the survival function.
2Those where the second order moment exists.
3This is the Poisson density.
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In the case of integer r.v., µ(N) = 1 and xµ =∞, hence

F̄ (n)

F̄ (n− 1)
−−−−→
x→∞

1

⇔ F̄ (n)− F̄ (n− 1)

F̄ (n− 1)
−−−−→
x→∞

0.

Lemma 4.7. Let τ ∈ R̄+ and (un) a sequence of real num-
bers, then

nF̄ (un) −−−−→
n→∞

τ

⇔ P{Mn ≤ un} −−−−→
n→∞

e−τ .

Proof.

We define un := x
an

+ bn, an > 0, then

P{Mn ≤ un} = Fn
(
x

an
+ bn

)
.

So if limx→xµ
F̄ (x)
F̄ (x−)

6= 1 then limn→∞ P{Mn ≤ un} 6= e−τ ∈
]0, 1[.

In the case of the Poisson density, X ∼ P(θ), P{X =
n} = e−θ θ

n

n! ,

F̄ (n)− F̄ (n− 1)

F̄ (n− 1)
= −θ

n

n!
e−θ

1

e−θ
∑
k≥n

θk

k!

=
−1

1 + Sθn
,

with

Sθn :=
∑

k≥n+1

θk−n

k . . . (n+ 1)

=
∑
k≥1

θk

(n+ k) . . . (n+ 1)

≤
∑
k≥1

(
θ

n

)k
=

θ
n

1− θ
n

→ 0.

Hence F̄ (n)−F̄ (n−1)
F̄ (n−1)

−−−−→
n→∞

−1 6= 0. Then the Poisson den-
sity doesn’t verify (3.1).

Corollary. Let F ∈ D(G) with the coefficients cn > 0 and
dn for (3.1) iff

nF̄

(
x

cn
+ dn

)
−−−−→
n→∞

− lnG(x) ,

for all x ∈ R.

4.2.1 Attraction domain of the Frechet density

We recall that

1− φα(x) = 1− exp
(
−x−α

)
1{x>0}

∼ x−α when x→∞.

So densities in its attraction domain can only be densities
which end queue are “near” a power density, in a sense to
determine.

Definition 4.3 (Slow variation). A function L is said with
slow variations if for x big enough, L(x) > 0 and ∀t > 0,

L(tx)

L(x)
−−−−→
x→∞

1.

Example 4.2. L(x) = C, L(x) = lnx.

Theorem 4.8. We have F ∈ D(φα), α > 0 iff L(x) =
xαF̄ (x) is with slow variations.

Moreover, if F ∈ D(φα) then cn =
(
F−1(1− 1

n )
)−1 and

dn = 0 are coefficients for (3.1).

Remark. With this theorem, F ∈ D(φα) ⇒ xµ =∞.

Example 4.3. The Pareto density, F̄ (x) =
(
x
θ

)−α for
x ≥ θ, then F̄ (x) ∼ Kx−α when x → ∞, then we can
take cn = (Kn)−

1
α .

4.2.2 Attraction domain of the Weibull density

We recall

ψα(x) = e−(−x)α
1{x<0} + 1{x≥0}.

Theorem 4.9. F ∈ D(ψα) iff xµ < ∞ and F̄
(
xµ − 1

x

)
=

x−αL(x), where L is with slow variations.
Moreover if F ∈ D(ψα) then cn =

(
xµ − F−1(1− 1

n )
)−1

and dn = xµ are coefficients for (3.1).

Example 4.4. U([0, 1]) ⇒ xµ = 1. F̄ (1− x−1) = x−1 ⇒
F ∈ D(ψ1) and cn = n.

4.2.3 Attraction domain of the Gumbel density

We recall

Λ(x) = exp(−e−x).

Theorem 4.10. F ∈ D(Λ) iff ∃x0 ∈] − ∞, xµ[ s.t. ∀x ∈
]x0, xµ[,

F̄ (x) = ρ(x) exp

(∫ x

x0

g(t)

a(t)
dt

)
,

where ρ, g are s.t. ρ(x) −−−−→
x→xµ

ρ > 0, g(x) −−−−→
x→xµ

1,

a : R→ R+ is absolutely continuous with a′(x) −−−−→
x→xµ

0.

In this case we can choose dn = F−1(1 − 1
n ) and cn =

1
a(dn) .

The reprentation of the theorem 4.10 is not unique, in
the sens that we have to make a choice for ρ, g.

Example 4.5 (Normal density).

11



4.2.4 Summary

Definition 4.4 (Generalized formulation). We call gener-
alized formulation the following expression of max stable
densities

Hξ =

{
exp

(
−(1 + xξ)−

1
ξ

)
if ξ 6= 0 with 1 + ξx > 0

exp(−e−x) else.

We can then summarise the previous theorems with this
one:

Theorem 4.11. Let U(t) = F−1(1− 1
t ), t > 0 et let ξ ∈ R

fixed. The three following assertions are equivalent:

(i) F ∈ D(Hξ)

(ii) ∃a s.t.

F̄ (u+ xa(u))

F̄ (u)
−−−−→
x→xµ

{
(1 + ξx)−

1
ξ if ξ 6= 0

e−x if ξ = 0.

(iii) ∀x, y > 0, y 6= 1,

U(sx)− U(s)

U(sy)− U(s)
−−−→
s→∞


xξ−1
yξ−1

if ξ 6= 0

ln x
ln y if ξ = 0.

5 Application to quantile calculation
The empiric quantile is very linked to the order statistic of
the observation (X1, . . . , Xn). To simplify we assume that
F is continuous. Hence µ has no atom and P{Xi = Xj} = 0

for i 6= j. Then
(
X

(n)
k

)
1≤k≤n

is well defined and verifies

(i) minkXk = X
(n)
1 < · · · < X

(n)
n = maxkXk ;

(ii) {X(n)
k , k ∈ J1, nK} = {Xk, k ∈ J1, nK}.

Then F−1
n (α, ω) = X

(n)
kn(α) where kn(α)−1

n < α ≤ kn(α
n . The

problem is when n is small and α ≈ 1, there is a possibility
that X(n)

n < qα.
A solution is to use a parameter: F ∈ D(Hξ) and with

the corollary,

nF̄

(
x

cn
+ dn

)
−−−−→
n→∞

− lnHξ(x).

So for u := x
cn

+ dn and n big enough,

F̄ (u) ≈ 1

n
(1 + ξcn(n− dn))−

1
ξ ,

so with u = qα and by approximating ξ̂ (as well as ĉn and
d̂n) we have

q̂α = d̂n +
1

ξ̂ĉn

(
(n(1− α))−ξ̂ − 1

)
.

So if we can estimate ξ̂ we have a chance to estimate the
quantile.

5.1 Pickands estimator
5.1.1 Founding principle

Theorem 5.1. Let F ∈ D(Hξ), ξ ∈ R and (kn)n a sequence
of integer numbers s.t. kn

n −−−−→n→∞
0 and kn −−−−→

n→∞
∞. Then

ξ̂kn =
1

ln 2

(
X

(n)
n−kn+1 −X

(n)
n−2kn+1

X
(n)
n−2kn+1 −X

(n)
n−4kn+1

)
P−−−−→

n→∞
ξ.

Lemma 5.2. If U1, . . . , Un iid ∼ U([0, 1]) then(
U

(n)
k

)
∼ Γk

Γn+1
,

where Γk =
∑k
i=1Ei, Ei iid ∼ E(1).

Proof.

Lemma 5.3. Let kn ∈ J1, nK, kn
∞−−−−→

n→∞
. Let (Vn)n≥1 se-

quence of r.v. iid ∼ Pareto(1), then

kn
n
V

(n)
n+1−kn

P−→ 1.

Proof.

Proof. (of the Theorem).

5.1.2 Heuristic method

We have by definition U(x) = F−1(1− 1
n ), it is clear that

qα = U

(
1

1− α

)
.

With theorem 4.11 we know that

U(sx) ≈ U(s) +
xξ − 1

yξ − 1
(U(sy)− U(s) when s→∞

with the convention, ξ = 0 ⇒ xξ−1
yξ−1

= ln x
ln y .

For a given k, the idea is then to set s := n
k−1 ,

x =
1

s(1− α

=
k − 1

n(1− α)

≈ k

n(1− α)

and y = 1
2 . Then we have U(sx) = U( 1

1−α ) = qα, and then

qα ≈ U

(
n

k − 1

)

+

(
k

n(1−α)

)ξ
− 1

2−ξ − 1

(
U

(
n

2(k − 1)

)
− U

(
n

k − 1

))
.

12



We are still in the heuristic method, we can then replace
U with its estimator

Un(y) = F−1
n

(
1− 1

y

)
Fn(x) =

1

n

n∑
i=1

1{Xk≤x}.

And as Fn is supposed continuous, we have Fn
(
X

(n)
k−1

)
=

k−1
n . So X(n)

k−1 = F−1
n

(
k−1
n

)
and

Un(s) = Un

(
n

k − 1

)
= F−1

n

(
n− k + 1

n

)
= X

(n)
n+1−k.

This conducts to the estimator

q̂α =

(
k

n(1−α)

)ξ̂
− 1

2−ξ̂ − 1

(
X

(n)
n+2−2k −X

(n)
n+1−k

)
+X

(n)
n+1−k

5.2 Peaks over threshold

Here the approach is different from the Hill and Pickands
estimators.

5.2.1 Theoretical principle

Let u be a fixed threshold, and define

Nu := Card{i ∈ J1, nK, Xi > u}

that represents the number over the threshold. And the cdf
of Y1, . . . , YNu is given by, ∀y ≥ 0,

Fu(y) = P{Y ≤ y|X > u}
= P{X − u ≤ y|X > u}.

We can adopt a constructive approach, let

τk := inf {t ∈ Jτk−1 + 1, nK, Xt > u} , τ0 = 0

Yk = Xτk − u.

And we can see that Fu(y)F̄ (u) = P{X ≤ u+y and X > u},
hence

Fu(y)F̄ (y) = P{u < X ≤ u+ y}
= F (y + u) − F (u)

= F̄ (u) − F̄ (y + u) ,

so finally the relation, ∀y ≥ 0, ∀u ∈ R,

F̄ (u+ y) = F̄ (u)F̄u(y). (5.1)

Definition 5.1 (Generalized Pareto). We define the gen-
eralized Pareto density Gξ,β , ξ ∈ R, β > 0, the density
charaterized by the survival function

Ḡξ,β =

(
1 + ξ

x

β

)− 1
ξ

1{ξ 6=0} + e−
x
β 1{ξ=0} ,

with

x ∈ Dξ,β =

{
R+ if ξ ≥ 0 ;[
0,−βξ

]
if ξ < 0.

Theorem 5.4. There exists a function β : R→ R∗+ s.t.

lim
µ→xµ
<

sup
y∈[0,xµ−µ]

∣∣F̄u(y)− Ḡξ,β(u)(y)
∣∣ = 0

iff F ∈ D(Hξ), ξ ∈ R.

Remark. If xµ =∞ the convergence is uniform.
To use the result of this last theorem we need the follow-

ing proposition.

Proposition 5.5. Let the observations Y1, . . . , Yn i.i.d. ∼
Gξ,β. Then for all u ∈ Dξ,β,

e(u) := E[Y − u|Y > u]

=
β − ξu
1− ξ

for ξ < 1 ,

and the log likelihood

l ((ξ, β), (Y1, . . . , Yn)) = −n lnβ

−
(

1

ξ
+ 1

) n∑
i=1

ln

(
ξ
Yi
β

+ 1

)
.

Proof.

5.2.2 Heuristic

When xµ = ∞ and u big enough, we can approximate
F̄u ≈ Ḡξ̂,β̂(u) where ξ̂ and β̂(u) are estimators of ξ and β.
We can also use the estimator for F̄n(u) ≈
1
n

∑n
k=1 1{Xk>u} = Nu

n . Hence (5.1) implies

F̄ (u+ y) ≈ Nu
n

(
1 + ξ̂

y

β̂

)− 1
ξ̂

.

The by setting y = q̄α − u, we have the estimator

q̂α = u +
β̂

ξ̂

((
n

Nu
(1− α)

)−ξ̂
− 1

)
.

How to choose u ? We introduce the empirical analog of
e(u):

en(u) =
1

Nu

n∑
k=1

(Xk − u)1{Xk>u}.

Then we choose u so that en(u) is more or less affine when
x ≥ u.

13



How to choose β̂ ? ξ̂ ? We differentiate the log likelihood
and use a numerical method of resolution, e.g. Newton–
Raphson.

6 CVA (Credit Valuation Adjust-
ment) and extensions

6.1 Real contract

6.2 Construction of a replication portfolio

6.3 XVA and predefault BSDE

14



Part III

7 Price an option

7.1 Insurer
Let’s say that I’m an insurer, I sell the option at t = 0 and
buy it at the maturity T , hence my portfolio’s value is

Πt = CerT − (ST −K)+.

7.1.1 First approach

My criteria is that I want on average Πt = 0, i.e. EP[Πt] = 0,
with P the historical probability. We recall that under this
probability, EP[e−rTST ] 6= S0.

Example 7.1. Assume that under P the asset drives like

dSt
St

= µdt + σ dWt , µ 6= r.

We find then

C = e−rTEP
[
(ST −K)+

]
6= CBS(S0,K, T, r, σ).

7.1.2 Second approach

Now assume that we want C s.t. Πt ≥ 0 P-a.s., hence

C ≥ e−rT (ST −K)+ P-a.s.

and then C =∞.

7.2 Baby trader
Now we have the right to hedge but just one time at t = 0,
hence I sell the option and buy ∆ of the asset at t = 0, and
at the maturity I buy the option and sell ∆ in the asset, my
portfolio’s value is

Πt = CerT − ∆S0e
rT − (ST −K)+ + ∆ST

= CerT − (ST −K)+ + ∆(ST − S0).

Remark. The trader has one parameter more than the in-
surer, its prices will then be lower.

7.2.1 Variance minimization

We still want EP[Πt] = 0, and furthermore we want to min-
imize the variance, the problem writes

min
(∆,C)

s.t. EP[Πt]=0

EP [Πt] = 0.

It’s a problem of quadratic optimisation under linear con-
straint, the solution is

Cq = e−rTEP
[
(ST −K)+ + ∆∗

(
ST − S0e

rT
)]

= e−rTEQq
[
(ST −K)+

]
,

where Qq s.t. EQq
[
e−rTST

]
= S0.

7.2.2 Super replication

Let’s assume that I never want to loose money, hence the
problem writes

Csup = min{C : ∃∆ s.t. Πt ≥ 0 P-a.s.}.

But Πt is piecewise, then the optimum is reached on edges,

Πt ≥ 0 P-a.s.

⇔

 CerT − ∆S0e
rT ≥ 0 (ST = 0)

∆ − 1 ≥ 0 (ST =∞)
CerT + ∆

(
K − S0e

rT
)
≥ 0 (ST = K).

It’s a linear programming problem (simplex), and we find
∆ = 1, Csup = S0.

Dual problem Now let us see the problem in its dual
form. First we can write the problem as

Csup = min
(C,∆)

max
q(S)≥0

C +

∫
q(dS)

(
e−rT (S −K)+

+ ∆(Se−rT − S0)− C
)
.

Theorem 7.1 (Minimax). Let X ⊂ Rn and Y ⊂ Rm be
compact convex sets. If f : X × Y → R is a continuous
function that is convex–concave, then we have that

min
x∈X

max
y∈Y

f(x, y) = max
y∈Y

min
x∈X

f(x, y).

Hence we have

Csup = max
q(S)≥0

min
(C,∆)

C +

∫
q(dS)

(
e−rT (S −K)+

+ ∆(Se−rT − S0)− C
)
.

We see that the min according to C is like
C
(
1− erT

∫
q(ds)

)
, then we want

∫
q(ds)erT = 1. For

∆ as well we have
∫
q(ds)erT

(
Se−rT − S0

)
= 0. Then

there is a probability Q s.t.

EQ[1] = 1 (7.1)
EQ
[
ST e

−rT ] = S0 (7.2)

So finally

Csup = max
Q∈M1

EQ
[
e−rT (ST −K)+

]
,

where

M1 := {Q ∼ P s.t. (7.1) and (7.2)} .

Remark. Then the martingale property comes from the dual
form of the problem.

Proposition 7.2. If M1 = ∅, then Csup = −∞ and there
an arbitrage opportunity.

Remark. Csub = max{C : ∃∆ s.t. Πt ≥ 0 P-a.s.}.
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Theorem 7.3. The price of the option C is without arbi-
trage iff

Csub ≤ C ≤ Csup.

Theorem 7.4. If there exists a replication strategy, Csub =
C = Csup.

Theorem 7.5. There exists a probability Q∗ ∈M1 s.t.

C = e−rTEQ∗
[
(ST −K)+

]
.

7.3 Real trader
We suppose to simplify that r = 0, but the following results
are true with r 6= 0.

Now we can hedge are any time, such that

Πt = C − (St −K)+ +

n∑
i=1

∆i(Si+1 − Si).

Hence with the same calculus than previously we find

Csup = sup
Q∈Mn

EQ
[
(ST −K)+

]
,

where

Mn := {Q ∼ P , E[Si|S1, . . . , Si−1] = Si−1} .

And then

C = EQ∗
[
(ST −K)+

]
, Q∗ ∈Mn.

7.4 Trader M2
Now n→∞,

Πt = C − (ST −K)+ +

∫ T

0

∆t dSt.

So we have

Csup = sup
Q∈M∞

EQ
[
(ST −K)+

]
,

with

M∞ := {Q ∼ P , where S is a Q-martingale}.

Let’s assume we know that the dynamic is dSt
St

= µdt +

σ dWt, hence C = EQ∗ [(ST −K)+], Q∗ ∈ M∞. But in fact
with price unicity we haveM∞ = {QBS} where under this
probability dSt

St
= σ dWt.

Remark. If we have dSt
St

= µdt + σt dWt with σt a stochastic
control,M∞ is not just one point.

Now we say that we want C,∆ s.t. Πt = 0 P-a.s. So
Ansatz : C = u(0, S0), ∆t = ∂Su(t, St) where u is solution
of {

∂tu + 1
2σ

2S2∂2
Su = 0

u(T, ST ) = (ST −K)+.

We verify, with Itô,

Πt = u(0, S0) + u(T, ST ) − u(0, S0)

−
∫ T

0

(
∂tu+

1

2
σ2S2∂2

Su

)
︸ ︷︷ ︸

= 0

dt − (ST −K)+

= 0.

7.5 Model independent option
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