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Exercise 1 (Stochastic optimal control). The market offers a (possibly random) bounded rate of interest rt at time
t ≥ 0 on a d-dimensional financial model

dS
(i)
t

S
(i)
t

= b
(i)
t dt +

d∑
j=1

σ
(i,j)
t dW

(j)
t

b and σ are (possibly) random processes, the volatility matrix σt is invertible and both σt and bt are bounded for
all t a.s. We assume also that the market price of risk λt := σ−1

t (bt − rr1) is bounded. Define a utility function
U :]0,∞[→ R to be a continuously differentiable, strictly increasing, strictly concave function s.t. U ′(x) −−−−→

x→∞
0

and U ′(x) −−−→
x→0
>

∞.

1. Show that Ulog(x) = log x and Uα(x) = xα

α , α ∈]0, 1[ are utility functions.

Fix an initial wealth x ∈]0,∞[. For any strategy δ ∈ A (the set of admissible strategies), let (X
(δ,x)
t )t≥0 denote

the value of the self-financing portfolio with the strategy δ with initial wealth x. We will show that there exists an
admissible strategy which maximizes the expected utility i.e. ∃!δ∗ ∈ A s.t.

E
[
U(X

(δ∗,x)
T )

]
= max

δ∈A
E
[
U
(
X

(δ,x)
T

)]
. (0.1)

2. (Legendre–Fenchel transform) Show that the inverse function of U ′(·), denoted by I :]0,∞[→]0,∞[, exists
and is strictly decreasing. Prove that

Ũ(y) := max
x∈R∗

+

{U(x) − xy} = U(I(y)) − yI(y) ;

Ũ ′(y) = −I(y) ;

U(x) = Ũ(U ′(x)) + xU ′(x) = min
y∈R∗

+

{Ũ(y) + xy}.

3. (Lagrange multiplier) Recall that the price at time t < T of a contingent claim on the assets S with payoff Ψ
at maturity T is given by

Xt =
E[HTΨ|Ft]

Ht
,

where H is a process determined by the market price of risk and the rate of interest. The initial value X0 is
given by x = E[HTΨ]. Prove that, ∀y > 0,

E[U(Ψ)] ≤ E
[
Ũ(yHT )

]
+ xy.

Prove that this is an equality iff Ψ = I(yHT ).

4. Define the mapping X0(y) := E[HT I(yHT )]. Prove that X0 is a strictly decreasing function with

X0(y) −−−→
y→0
>

∞ , X0(y) −−−→
y→∞

0.
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5. Prove that an optimal investing strategy is linked to a selt financing hedging strategy such that the expected
utility of the portfolio at maturity T is equal to the optimal expected utility given in (0.1).

6. Compute explicitly an optimal strategy in the setting of logarithmic utility Ulog and the power utility Uα, for
the power utility assume r, b and σ are deterministic. To simplify the computations take d = 1.

Proof. 1. Trivial.

2. U ′ is strictly decreasing and U ′(x) > 0 as U is strictly concave and increasing. Hence the inverse exists and
takes value in ]0,∞[→]0,∞[.
We have d

dx2 (U(x) − xy) = U ′′(x) < 0 as U ′ is strictly decreasing, then the max exists and is reached in x0

s.t.
d

dx |x=x0

(U(x)− xy) = 0

⇔ U ′(x0)− y = 0

⇔ x0 = I(y).

And then Ũ(y) = U(I(y))− yI(y). We verify easily the second and third assertions.

3. With the precedent question:

E [U(Ψ)] , E
[

min
ỹ∈R∗

+

{Ũ(ỹ) + Ψỹ}
]

≤ E
[
Ũ(ỹ) + Ψỹ

]
, ∀ỹ > 0

≤ E
[
Ũ(HT y)

]
+ E [ΨHT y] , with y :=

ỹ

HT

≤ E
[
Ũ(HT y)

]
+ xy.

And the precedent question tells us that we have the equality for U ′(Ψ) = yHT ⇔ Ψ = I(yHT ).

4. As U ′ is decreasing it is easy to see that X0 is decreasing. Moreover,

lim
y→0
>

X0(y) , lim
y→0
>

E[HT I(yHT )]

= E

[
HT lim

y→0
>

I(yHT )

]
(Monotone convergence)

= ∞ ,

indeed limx→∞ U ′(x) = 0 ⇒ limy→0
>

I(y) =∞, and HT > 0. Same proof for the other limit.

5. Let’s fix the initial wealth x̄, we saw in the precedent question that X0 is a bijection, hence ∃!ȳ s.t. X0(ȳ) = x̄,
so x̄ = E[HT I(ȳHT )]. From the question 3, a candidate for the payoff is Ψ̄ = I(ȳHT ).

We are in a complete market so ∃δ̄ / X(x̄,δ̄)
T = Ψ̄, and define Ψ = X

(x̄,δ)
T . We saw that ∀δ,

E
[
U(X

(x̄,δ)
T

]
≤ E

[
Ũ(ȳHT )

]
+ x̄ȳ ,

with equality in X x̄,δ̄
T . Hence δ̄ is a maximizer of (0.1).

6. We clearly have Ilog(y) = 1
y , hence for the optimal strategy δ∗,

X
(x,δ∗)
t = E

[
HT

Ht
I(yHT )

∣∣∣∣Ft]
= E

[
1

yHt

]
= xH−1

t
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Exercise 2 (Leveraging effect). For a fixed time T , let α : [0, T [→]0,∞[ be a differentiable and define the stochastic
process It :=

∫ t
0
αs dWs and the deterministic process At :=

∫ t
0
α2
s ds. For the fisrt part of this problem, we will

study the properties of the process It ; we shall then use it to study financial situation with an inadmissible trading
strategy.

1. For any given t, what is the distribution of It ? Specify parameters if needed.

2. Explain why there is an “inverse” process C s.t. CAt = t, t < T .

3. Define a stochastic process Bt := ICt . Prove that Bt has a centred normal distribution. Compute its covariance
and deduce that B is a brownian motion1

4. Asume that limt→T
<

At =∞. Prove that lim supt→T
<

It =∞ a.s.

The market offers a constant interest rate r and an asset modelled by

dSt
St

= µdt + σ dWt.

A trader starts a protfolio V with initial value $1. He is allowed to trade in a self-financing manner, and he believes
he has a guaranteed winning strategy that will earn him at least $5 bn before time T . At each time t, he invests
an amount $ 1√

T−t in the asset S.

5. Give the dynamic of e−rtVt, and prove that e−rtVt = g(t) + It for a deterministic function g and an α to be
determined explicitly.

6. Prove that this portfolio will obtain a value of at least $5 bn a.s. before T .

7. Why might tis strategy fail in practice ?

Proof. 1. α is deterministic so

It ∼ N
(

0 ,

∫ t

0

|αs|2 ds

)
.

2. With Ct := inf{s : As ≥ t}, we clearly have CAt = t.

3. We have BAt = It ∼ N (0, At), hence Bt ∼ N (0, t). And its covariance,

E [BAtBAs ] = E[ItIs]

=

∫ t∧s

0

α2
u du

= At ∧As.

So E[BtBs] = t ∧ s.

4.

lim sup
t→T
<

It = lim sup
t→T
<

BAt

= lim sup
s→∞

Bs = ∞.

5. We have the strategy V0 = 1 and δt = 1√
T−t , so dVt = δt

dSt
St

+ r(Vt − δt) dt.

d
(
e−rtVt

)
= −re−rtVt dt + e−rt(δtµdt+ δtσ dWt + rVt dt− rδt dt)

= δte
−rt(µ− r) dt + δte

−rtσ dWt

e−rtVt = g(t) + Iαt ,

where g(t) = 1 +
∫ t

0
µ−r√
T−se

−rs ds, αt = σ√
T−te

−rt.

1We should actually prove that B is a gaussian vector to show that its a brownian motion.
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6. We have limt→T
<

At = limt→T
<

∫ t
0

σ2

T−se
−rs ds =∞, so with question 4,

lim sup
t→T
<

I(t) = ∞

⇒ lim sup
t→T
<

e−rtVt = ∞.

7. The first problem is that δ −−−→
t→ T

∞, and we can show that lim inft→T
<

e−rtVt = −∞.

Exercise 3 (Clewlow–Strickland two factor model). The market offers a constant rate of interest r. Let W (1) and
W (2) be correlated Brownian motions with d〈W (1),W (2)〉 = ρdt for ρ ∈]0, 1[ under the risk neutral probability
measure Q. For any finite T > 0 and 0 ≤ t ≤ T , define the dynamical process

dFt,T
Ft,T

= σ1e
−θ1(T−t) dW (1) + σ2e

−θ2(T−t) dW (2) ,

for σ1, σ2, θ1, θ2 > 0 and F0, T = 1.
Show that the price at time t of a calendar spread option with payoff (FT,T1 −FT,T2)+ for T ≤ T1 ≤ T2 is equal

to

e−r(T−tFt,T1
Φ(d+) − e−r(T−t)Ft,T2

Φ(d−) , d± =
1√
v

ln

(
Ft,T1

Ft,T2

)
± 1

2

√
v ,

v =

∫ T

t

(
σ2

1

(
e−θ1(T1−s) − e−θ1(T2−s)

)2

+ σ2
2

(
e−θ2(T1−s) − e−θ2(T2−s)

)2

+ 2ρσ1σ2

(
e−θ1(T1−s) − e−θ1(T2−s)

)(
e−θ2(T1−s) − e−θ2(T2−s)

))
ds.

Proof. We define B = (B1, B2) a brownian motion in Q,

B1 = W 1 ;

B2 = ρB1 +
√

1− ρ2B2.

So Ft,T1 , Ft,T2 are martingales under Q and with i ∈ {1, 2},

dFt,Ti
Ft,Ti

= σ1e
−θ1(Ti−t) dB1

t + ρσ2e
−θ2(Ti−t) dB1

t +
√

1− ρ2σ2e
−θ2(Ti−t) dB2

t ;

Ft,T2
= exp

(∫ t

0

λ∗s dBs −
1

2

∫ t

0

‖λs‖2 ds

)
,

where

λS =

 σ1e
−θ1(T2−s) + ρσ2e

−θ2(T2−s)

√
1− ρ2σ2e

−θ2(T2−s)

 .
We note Pt the price at time t,

Pt = EQ

[
e−r(T−t)FT,T2

(
FT,T1

FT,T2

− 1

)+
∣∣∣∣∣Ft
]

= FT,T2
EQT2

[
e−r(T−t)

(
FT,T1

FT,T2

− 1

)+
∣∣∣∣∣Ft
]

(Bayes formula)

with

dQT2

dQ
= FT,T2

.
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And

Ft,T1
= exp

(∫ t

0

ϑ∗s dBs −
1

2

∫ t

0

‖ϑs‖2 ds

)
, with

ϑs =

 σ1e
−θ1(T1−s) + ρσ2e

−θ2(T1−s)

√
1− ρ2σ2e

−θ2(T1−s)

 .
So finally,

Pt = e−r(T−t)Ft,T2

Ft,T1

Ft,T2

Φ(d+) − e−r(T−t)Ft,T2Φ(d−) , with

d± =
ln

Ft,T1
Ft,T2√∫ T

t
‖λs − ϑs‖2 ds

± 1

2

∫ T

t

‖λs − ϑs‖2 ds.
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