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Exercise 1. The dynamic of the price of a dividend paying asset satisfies the SDE

s,

= (r—q)dt + odW;,
S

where W is a brownian motion under the risk neutral measure Q, o > 0, r > 0 rate of interest and ¢ dividend rate.
In this exercise we will prove the Call-Put symmetry

Call(T, Soe ™", K) = Put(T,Ke ", 5,), vi=r—gq.
1. For Sy = x, show that the price of Call(T,z, k) under the numeraire
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x, = 2¢

is equal to

2. Let WX := W, — ot. Write down the formula for % as an exponential of WiX.
3. Using the fact that WX is a brownian motion under Q%, prove the Call-Put symmetry.
Proof. 1.
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Call(T,Spe ™", K) = Egx

+
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= Egx [e‘qT (Soe_”T — Ke_”Te_”W%{_TT) } .
Put(T,z,K) = Egle " (K — Sz)"]

02
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Put(T,Ke ™", Sy) = Egx [eqT (Soe*VT - Ke*VTe”WT*TT) } .
The equality is proven as Lg(W) = Lo(—W) = Lox (W).
O
Exercise 2. Assume that the market offers a constant rate of interest r and that the price of an asset is given by
ds,
—L = rdt + odW,.
St

+
We compute the price of the Asian option with payoff Up := (exp (% fOT In S dt) - KST) .

1. Prove that % fOT In S; dt has a Gaussian distribution. Compute the mean and variance of this distribution.
2. Show that the price of the Asian option at time 0 can be expressed as
E[(Ciexp(Z + CoT) — C3K)7]

for a gaussian r.v. Z and Cj,C5,C5 constants. The parameters of Z and the constants are to be given
explicitly.

Proof. 1. We have with the definition of the integral,
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And finally £ fOT InSydt ~ N(ln Sy + (r — %2)%,02%3).



Exercise 3. At time t, the market offers a bounded interest rate r; and two assets whose prices are given by

1s®

S bV dt + oydBY
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where (B(l),B(Q)) is a two dimensional standard brownian motion under the historical measure P, p € [—1,1],
01,09 > 0, and (b(l), b(2)) is a bounded R2-valued process.

+
1. Compute the value of an option with payoff ¥ = (Sj(?) — KS(TI)) at time 0 for K > 0.

2. Give the hedging strategy invested in the risky assets only for the option.

Proof. 1. We have under the risk neutral measure Q

dS,gl) N Q o1
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where BY is a 2-dimensional brownian motion. We also define the change of numeraire
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hence the price of the option is
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and —S{U is a martingale under Q°,
T
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where B? is a brownian motion under Q?, ¥ := ¥5—%, dW;° := ||X|| 7! ((ng —01) dBtS’1 + o94/1 — p? dBtS’2).
Hence we have a BS price:
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2. Then the hedging strategy is to buy ®(d™) asset 2 and short K®(d~) asset 1.



Exercise 4. Assume that the market offers interest rate » = 0 and an asset whose price is dSSt = o dW, for some

bounded, possibly random o; > 0. In this question, we prove the Lee formula for the small strike asymptotic:

2

limsupgj(x) = B = 2—4<\/62+d—5), g = sup{q:E[S;] < oo}

T——00 |J)|

where = := In SEO is the log-moneyness and o;(x) is the BS implied volatility. You are given the formula for the
large strike asymptotic:

2
limsupagr) = fBr = 2—4(\/]52+I5—]5)7 p = sup{p:E[S@H} <oo}.
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1. Notice that
E[(S—K)*] = CPHO@(8, k),
where CB3(?)(.) is the BS (volatility o) price of a call. Apply a change of numeraire to show that
E[(Si—K)*] = PPROEN(K, S),

where PBS(@)(. ) is the BS (volatility o) price of a put, and &7(x) is the implied volatility of the fictional asset
whose price is S; = Sgt .

2. Use the put-call symmetry to show that o;(z) = 6;(—=) and therefore

2
lim sup L(m) = limsup

57 (z)

3. Use the large strike asymptotic Lee formula for the asset S in order to prove the small strike asymptotic Lee
formula for the asset S.

Proof. 1. We have by definition of the implied volatility
E [(St _ K)Jr} Y CBS(Ui(w))(So,K).

Now we want to apply a change of numeraire

* 9
dQ |7, So’
hence the price is
+1 _ S0 +
Eq [(ST—K) ] = [Egs S—T(ST—K)
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- pBS(Ffz(—I))(K’ Sp).
Indeed as the spot is K and the strike Sy, we have 5 (In %) =o7(—x).

2. The symmetry (problem 1) writes PP%(?) (K, Sy) = CB5() (S, K), hence in our case

¢BS(o1(z) (507 K) = CBS(c”rz(fw))(SO’ K).
As the BS price is strictly growing with the volatility we have o;(x) = 6;(—x). And then
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3. The large strike asymptotic Lee formula on S is

lim sup o1(z) = Br = 2—4(\/]52—1—]5—]5) , p o= sup{p:EQ [5‘?‘1} <oo}
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And we have with a change of numeraire

o S (SoK !
p = Sup{p.E]}» le (ST) < 00
sup {p : Ep [S;7] < o0}

= q.



