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Exercise 1 (Stochastic volatility). Assume that the market offers interest rate 0. At time T > 0, consider a
stock whose value is ST = S0 exp

(
− 1

2 σ̃
2T + σ̃WT

)
, where S0 > 0, (Wt)t≥0 is a Brownian motion, and σ̃ is a r.v.

independent of WT .

1. Let K > 0 be a fixed strike. Determine explicitly the deterministic function h : R → R s.t. C0 := E[(ST −
K)+] = E[h(σ̃2)].

2. Discuss the accuracy of the approximation C0 ≈ h(E[σ̃2]) + 1
2Var[σ̃2]∂2xh(x)|x=E[σ̃2].

3. Show that C0 < CBS := h(E[σ̃2]) around the money, and C0 > CBS in/out the money. Paying particular to
σI =

√
E[σ̃2].

Proof. 1. We have,

C0 , E
[(
S0e
− 1

2 σ̃
2T+σ̃WT −K

)+]
= E

[
E
[(
S0e
− 1

2 σ̃
2T+σ̃WT −K

)+∣∣∣∣ σ̃2

]]
= E

[
CallBS(T,K, S0, σ̃

2)
]
.

So we identify h:

h(x) = S0Φ(d+(x)) − KΦ(d−(x)) , with

d±(x) =
ln
(
S0

K

)
√
Tx

± 1

2

√
Tx.

2. Let us do a Taylor expansion of second order of h(σ̃2) around E[σ̃2],

h
(
σ̃2
)

= h
(
E[σ̃2]

)
+
(
σ̃2 − E[σ̃2]

)
∂xh(x)|x=E[σ̃2] +

1

2

(
σ̃2 − E[σ̃2]

)2
∂2xh(x)|x=E[σ̃2] + ε.

Now taking the expectation we have

C0 , E
[
h
(
σ̃2
)]

= h(E[σ̃2]) +
1

2
Var[σ̃2]∂2xh(x)|x=E[σ̃2] + ε ,

where ε is an error. This approximation works in the case were σ̃2 is stochastic but “not so much”, and so σ̃2

is near form its expected value.

3. If we consider that the previous approximation is an equality we have C0 = CBS = 1
2Var[σ̃2]∂2xh(x)|x=E[σ̃2].

Let us check the sign of the second order derivative of h.

∂xh(x) = S0φ(d+(x))d′+(x) − Kφ(d−(x))d′−(x)

=
K√
2π
e−

d2−(x)

2
1

2

√
T

x
,

1



we have used the fact that S0φ(d+) = Kφ(d−). And then after calculations

∂2xh(x) =
K

2
√

2π
e−

d2−(x)

2

√
T

x

(
1

2x2T

(
ln
S0

K

)2

− T

8
− 1

2x

)
.

So at the money and around, h′′(x) < 0 and C0 < CBS . And if K � S of K � S we have C0 > CBS . This
shows that we have a smile in the implied volatility.

Exercise 2 (Implicit volatility expansion). 1. Let λ ∈ C. Let h(x) = (ek−ek)+. Show that ĥ(λ), the generalized
Fourier transform of h at λ with Im(λ) < −1, i.e.

ĥ(λ) :=

∫
R
h(x)eiλx dx

is given by −e
k−ikλ

iλ+λ2 .

2. Show that

u(t, x, k, σ0) :=
1

2π

∫
R
ĥ(λ)etφ0(λ,σ0) dRe(λ)

= exΦ(d+) − ekΦ(d−) ,

where φ0(λ, σ0) := − 1
2σ

2
0(λ2 + iλ), d± := x−k

σ0

√
t
± 1

2σ0
√
t, and Φ is the distribution function of the standard

Gaussian.

3. Deduce that σ 7→ u(t, x, k, σ) is analytic. Write down the Taylor expansion of u(t, x, k, σ0 + δ) around σ0.

4. Let ε > 0 and define φε(t, λ, σ0) := (1− ε)tφ0(λ, σ0) + εφ(t, λ), where iλx+ φ(t, λ) := ln
(
Ex[eiλXt ]

)
for some

process Xt. Next define

uε(t, x, k, σ0) :=
1

2π

∫
R
ĥ(λ)eiλxeφ

ε(t,λ,σ0) dRe(λ).

Thus, uε(t, x, k, σ0)|ε=1 = uX , where uX is the price of payoff h under the process Xt and uε(t, x, k, σ0)|ε=1 =
uBS , the price under Black-Scholes formula. Deduce that

uε(t, x, k, σ0) =

∞∑
k=0

εnun(t, x, k, σ0) ,

where

un(t, x, k, σ0) :=
1

n!2π

∫
R
ĥ(λ)eiλxetφ0(λ,σ0)(φ(t, λ)− tφ0(λ, σ0))n dRe(λ).

Proof. 1. We have

ĥ(λ) ,
∫
R

(ex − ek)+e−iλx dx

=

∫ ∞
k

(ex − ek)e−iλx dx

=

[
1

1− iλ
ex(1−iλ) +

1

iλ
ek−iλx

]∞
k

=
−ek−ikλ

iλ+ λ2
.

2. We set Xt := x− 1
2σ

2
0t+ σ0Wt, where W is a Brownian motion. Hence

exΦ(d+)− ekΦ(d−) , Ex[h(Xt)]

= Ex
[

1

2π

∫
R
ĥ(λ)eiλXt dRe(λ)

]
=

1

2π

∫
R
ĥ(λ)eiλxEx[e−

1
2 iλσ

2
0t+iλσ0Wt ] dRe(λ).

As Wt ∼ N (0, t) we have Ex[e−
1
2 iλσ

2
0t+iλσ0Wt ] = e−

1
2 iλσ

2
0t+

1
2σ

2
0λ

2t = etφ0(λ,σ0).
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3. ĥ is analytic and φ0 as well, so by Fubini σ 7→ u(t, x, k, σ) too.

u(t, x, k, σ0 + δ) =
∑
n≥1

δn

n!

∂nu

∂σn

∣∣∣∣
σ=σ0

,

and ∂nσu|σ=σ0
= 1

2π

∫
R ĥ(λ)eiλx∂nσe

tφ0(λ,σ)|σ=σ0
dRe(λ).

Exercise 3 (Bachelier model). Assume the market offers interest rate 0. The Bachelier model for the evolution of
a stock price is given by

SBt = S0 + σBWt ,

for t ≥ 0, where S0 ≥ 0 is the spot price, σB > 0, and (Wt)t≥0 a Brownian motion.

1. Prove that under the Bachelier model, the price of a call option on the stock with strike K at expiry time T
is given by

CB0 := (S0 −K)Φ

(
S0 −K
σB
√
T

)
+ σB

√
Tφ

(
S0 −K
σB
√
T

)
.

2. Let σB = S0σ
BS . using the relation ey ≥ 1 + y, prove that at the money option prices given by the Bachelier

and Black-Scholes models satisfy

0 ≤ CB0 − CBS0 ≤ S0

24
√

2π

(
σBS

)3
T

3
2 .

Comment ont the accuracy of the Bachelier formula as an estimator of the Black-Scholes formula for the
option price.

3. Suppose that one knows the option price is C0 (model independent). Show that the at the money implied
volatility σBI and σBSi yielded respectively by the Balchelier and Balck-Scholes models satisfy

0 ≤ σBSI − σBI
S0
≤
(
σBSi

)3
T

24
.

Comment on the accuracy of the Bachelier implied volatility as an estimator for the Black-Scholes implied
volatility.

Proof. 1.

CB0 , E[(S0 + σBWT −K)+]

=

∫ ∞
−d

(S0 + σB
√
Tz −K)φ(z) dz , where d :=

S0 −K
σB
√
T

= (S0 −K)

∫
−d
∞φ(z) dz + σB

√
T

∫
−d
∞zφ(z) dz

= (S0 −K)(1− Φ(−d)) + σB
√
T [−φ(z)]∞−d

= (S0 −K)Φ(d) + σB
√
Tφ(d).

2. At the money we have CB0 = σB
√
T√

2π
. And

CBS0 =
S0√
2π

∫ σBS
√
T

2

−σBS
√
T

2

e−
x2

2 dx

≤ S0√
2π
σBS
√
T = CB0 .
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On the other hand we have

CBS0 ≥ S0√
2π

∫ σBS
√
T

2

−σBS
√
T

2

1 +
x2

2
dx

≥ CB0 −
S0√
2π

[
x3

6

]σBS√T
2

−σBS
√
T

2

≥ CB0 −
S0

24
√

2π

(
σBS
√
T
)3
.

Which gives us the control on the difference between the pricing of the two models. When the volatility is
low, Bachelier is a good approximation of BS.

3. we have the following relations

C0 =
σBI
√
T√

2π

=
S0√
2π

∫ σBSI

√
T

2

−
σBS
I

√
T

2

e−
x2

2 dx.

Then we use the same inequalities as in the previous question to deduce the relation.
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