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Exercise 1 (Process due to Hamza and Klebaner). Let (B, By, W;);>0 be three independent Brownian motions,

and define the process
B; fort>1,
X = Vit (Bl cos Wine + Bl sin I/Vlnt) for t < 1.
1. Show that E[X;] = 0 and that Var[X;] =t for all £ > 0.
2. Show that for any fixes t > 0, X is normally distributed.

3. Define the filtration

0(By, By, Wy :u < 1,0 <lInt) for t < 1.
Show that for any 0 < s < ¢, E[X;|F;] = X;.

u < >
}_t{a(Bu u <t) fort > 1,

Proof. 1. We have for ¢ > 0,

E[Xt] = E [Bt]lte[o,l} + \/g(Bl cos Win¢ +Bl Sinwflnt)lte[l,oo[]

E[Bt]1icio,1) + Vi (E[BﬂIE[cos Win¢] + E[B1]E[sin Wi, t]) Tieq1,00 as they are independent
=0 as E[Bs] =0 for all s > 0.

For t <1, Var[X;] = Var[B;] =t. For ¢t > 1,

Var[X;] = Var [\/f(Bl 08 Wiyt + By sin Wlnt)}
= t (Var[Bl cos Win ] + Var[él sin Wi ¢] + 2Cov(B1 cos Wiy ¢, By sin Wlnt)>
= ¢ (E[B% cos® Win 4] + E[B? sin? Wlnt])
:t@%MMWMHM%MWWM)
= tE[cos® Wiy + sin® Wi, 4] = t.
2. For t <1, Xy = By ~ N(0,t). For ¢t > 1 let us compute the Fourier transform of Xy,
E [eiuXt] - E []E {eiu\/i(Bl cos Win ¢+ B1 sin Wl’”)\VVlntH

- E |:E |:6iux/EBl cosznt|VVlnt:| E [eiuél sinWlnt”/Vlnt:H

w2t cos® Wy, uw?tsin? Wy,
e 2 e 2

= E

2

e E[eiuN(O,t)}'



3. For 0 < s <t <1, E[X{|Fs] = E[B:|Fs] = E[B; — Bs + Bs|Fs] = E[B;_s|Fs] + Bs = Bs = X;.
For 1 < s <t,

E[X:|Fs] = E [\/1? (Bl cos(Wint — cos Wiy s + cos Wiy s) + Bl(sin Win+ — sin Wiy, s + sin Wlns)) ‘ fs]
= E |:\/£Bl (COS(Wlnt - Wlns) Ccos Wlns - Sin(Wlnt - Wlns) sin I/Vlns)
+ \/iél (Sin(VVlnt - I/Vlns) Ccos Wlns + COS(Wlnt - Wlns) sin Wlns)

= \/EBl (COS I/Vln S]E [COS(WIH t—In s)] — sin I/Vln SE [Sin(Wln tflns)])
+ \/iél (COS VVln SE [Sin(VVln t—lns)] — sin Wln SE [COS(Wln t—lns)])

= \/fBlcosVVlnse_ 2 —O+O+ﬂ318inmnse_
\/5(31COSI/I/Ins+BlSinW/1ns) = Xs-

]-"s}
Int—Ins

We use the same technique for 0 < s <1 < t. O

Exercise 2 (Formula of Brenner and Subrahmanyan). The Black-Scholes pricing formula of a call option with
strike K at maturity T on a stock with volatility o is given by

CBN(T,K,S) = S®(d)— Ke "T®(dy) ,
where S is the current price of the underlying, r the interest rate and ® the standard Gaussian distribution. And,

ln(KeﬁTT)—’_Jz% .
ovT ’
d2 = dl—O'\/T.

dy

Using a first Taylor expansion of ®(x) around z = 0, deduce that
CBS(T,K,S) ~ 04SoVT,

for S = Ke ™. With the same technique show that the Delta of the call is 2‘approximately 0.5 + 0.20v/T for
T
S = Ke~"T. Finally, show that the Vega of the call is approximately 0.4v/TSe= ¥ for S = Ke "7,

Proof. With S = Ke™T we have di = 20V/T, d» = —40V/T and CP5(T, K, S) = S(®(d1) — ®(d2)). We write the
first order Taylor expansion around x = 0,

®d(dy) ~ ®0) + d1¢(0),  when oVT — 0.

Where ¢(z) = -1 ~% . So we have

Var ¢
CPS(T,K,S) ~ S(®(0) + dig(0) — ®(0) — d2¢(0))
1
~0.4

We know that AZ9(C) = &(d;) ~ ®(0) + d1¢(0) when S = Ke™™" and ov/T — 0. So APS(C) ~ 1 +0.20VT.
When S = Ke™"", CB9(T, K, S) = S(®(20VT) — ®(—10VT). So the Vega is

>

0CBS(T, K, S)

BS a
voR(C) = 5
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Exercise 3 (Pricing with dividends). For a right continuous process (S¢)¢>0, we define S;— := lim,4; S,.. Suppose
that a stock with price process (S;);>0 pay a dividend d; +y1.5,— for 61 > 0 and y; € [0, 1] at fixed time 0 < t; < T.
Before and after the dividend payment, the price of the stock evolves like a geometric Brownian motion with zero
drift and volatility o, i.e.

Sp exp (—”—;t + O'Wt) fort <ty ,

St = 2
St, exp (—%(t —t1)+o(Wy — Wt1)> for t > 4.
The rate of interest is 0.

1. Write down the stock price S¢, at a payment date ¢; with respect to the price just before the payement Sy, —
and the dividend payment and show that

ST = (1—y1)57(9)—517

0)
_ gl St
T <S” ) ’

where SPE,?) = Spexp (—"—;T + O'WT> is the price of the fictional stock with zero dividends and _(TO) =(1-
yl)S(TO) — 51.

2. How would you compute the price of a call option with strike K at expiry T on the fictional stock 5’7(9 ) 7

3. Consider an option on the stock with payoff h(z — K) at expiry T, where h : R — [0, oo[ is twice differentiable
with bounded derivatives.
Show that E[1/ (53 — K)] = —E[(5Y — k)] |s—x-

4. Using a conditioning argument, explicit computations with the Gaussian density, and a change of variable
argument, show that,

S

17 a(0)
E WSy — K) =5
Sy,

= O [h((1 = yo)e” TSP k)| ‘k:K:a

5. Write down the first order Taylor expansion of h(St — K) — h(Séf]) — K). Take expectations in this expansion

to derive an approximation of the price of the option with payoff h(S7 — K) in terms of E[h(S(TO) — K)], the
terms computed in parts 3 and 4 and an error term.

Proof. 1. With the condition of AOA we have Sy, = Sy, - — 01 — y1.5¢, —

2

St, exp (—02(T —t1)+o(Wp — Wt1)>

St

So exp (—%2T + O'WT)
So exp (f%Qtl + O'th)

2
= (1 —y1)Soexp (—02T+UWT> — 0

(0)
_ (0) S

t1

2. We are looking for the value of IE[(S'FEFO) - K)*],
o? *
((1 — 41)S0 exp <_2T + UWT> — 01 — K>

(s~ 2=2)']
1—yp

(1 _yl) CBS (T, K_51,SQ) .

B[Sy - K)*] = E

(1—wy)E

1—u

o? o? o2
= Spexp <—2t1 + ath) (1 —y1)exp (—2(T —t1) +o(Wp — Wt1)> — d1exp (—2(T —t1) +o(Wp — Wy,)

)



En'(SyY — K)] = E[I(9(Wr) - K)]
- / W (g(a) — K)pw, (x) da

with the dominated convergence

= o ([ Wlate) - Bypw ) ac)

k=K
= —OE[R(SY = K)llh=x-
4.
_ S(O) I S(O) S(O)
E h’(S%”-K)% = E|[N((1-y) (O)S(O) K)=L=|, where K° = K =&
Syt Syt Sy
= E EW, [h ( Jeo Wr=We) =5 (Tt 5(0) _ fe3) coWr=We)= 5 (1=t

e T— tlw—T(T tl)S K&) Uﬂw——(T t1)¢(x) d(E:|

= E /h’ ( (1—y1)e "1‘”*75(0) K5> e”lz*%gb(x) dx} , where o1 := o/T — t1
/h’ ( (1—y1)e "16"1“"775 (0) K‘s> o(x) df] , where T:=x — o0y

= E
o? o1i—2L o(0) ~ ~ o1z ﬁ S’%O)
= —0E h{(l—yp)eTre?** =28 k| ¢(z) dz , and e”1*T 2 = ——
k=K? St(?)
= —OE [h((1 - yr)e” T8O | .
o8 [1 (1 =) TS k]|
5. With the first order Taylor expansion,
hSr—K) ~ h(SY — K)+ (Sr — 8 (5% - K)
_ _ s
~ h(SY —K)+ 61 (SY —K) - gold ) _ K)
t1
By taking the expectations we find the three terms calculated previously. O



