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1 Simulation of random variables

1.1 Pseudo-random numbers

With the Monte Carlo methods and other types of applica-
tion we have to generate random numbers in order to make
simulations. So how can we generate random numbers from
nothing ?

A lot of mathematicians tried very different methods but
the congruential induction is one of the fundamental meth-
ods to simulate pseudo-random numbers. One considers the
sequence (xn) of so called pseudo-random numbers defined
by:

xn =
yn
N

, yn ∈ {0, . . . , N − 1}. (1.1)

And we generate the integers yn by congruential induction

yn+1 ≡ ayn + b mod N, (1.2)

where gcd(a,N) = 1. But there are other requirements that
the parameters N , a and b must satisfy to properly use this
method.

This introductory just aims to give the flavour of com-
plexity to generate random numbers. One recent develop-
ment is the family of Mersenne twister generators. The first
level denoted MT-p are congruential generators whose period
Np is a prime Mersenne number, i.e. Np = 2p − 1 where p
is a prime number. The most popular1 is MT-19937.

1.2 Fundamental principle of simulation

Theorem 1.1 (Fundamental principle of simulation). Let
(E, d) be a Polish space (complete and separable) and X :
(Ω,A,P) → (E,B(E)) a r.v. with distribution PX . There
exists ϕ : ([0, 1],B([0, 1]), λ)→ (E,B(E)) measurable s.t.

Px = λ ◦ ϕ−1 ,

where λ is the Lebesgue measure.

This theorem is practically of little use, it just says that
any r.v. can be simulated juste with the uniform distribu-
tion on [0, 1], i.e.

X ∼ ϕ(U) ,

where U ∼ U([0, 1]).

1.3 The (inverse) distribution function
method

Let µ be a probability distribution with distribution func-
tion F , ∀x ∈ R,

F (x) = µ([−∞, x]).

One can associate its canonical left inverse F−1
l on the open

]0, 1[,

F−1
l (u) = inf{x : F (x) ≥ u},

for all u ∈]0, 1[.

Proposition 1.2. If U ∼ U([0, 1]), then X := F−1
l (U) ∼ µ.

Proof. Let x ∈ R, {X ≤ x} = {F−1
l (U) ≤ x} = {U ≤

F (x)}. So that,

P{X ≤ x} = P{U ≤ F (x)} = F (x).

Example 1.1 (Exponential distribution). Let X ∼ E(λ),
λ > 0, then

FX(x) = λ

∫ x

0

e−λt dt = 1− e−λx , ∀x ∈]0,∞].

Then, for all y ∈]0, 1[, F−1
X = − ln(1−u)

λ . Now with U ∼
U([0, 1]), 1− U ∼ U([0, 1]) and

X := − lnU

λ
∼ E(λ).

Example 1.2 (Cauchy distribution). We know that for
C(c), c > 0, PX(dx) = c

π(x2+c2) dx. So,

FX(x) =
1

π

(
arctan

(π
2

)
+
π

2

)
, ∀x ∈ R.

Hence, F−1
X = c tan

(
π
(
u− 1

2

))
and,

X := c tan

(
π

(
U − 1

2

))
∼ C(c).

Example 1.3 (Bernouilli r.v.). Let p ∈]0, 1[, then,

X := 1{U≤p} ∼ B(p).

1.4 The acceptance-rejection method
Let µ be a non-negative measure on (E, E) and let f, g :
(E, E) → R+. Assume that f ∈ L1 with

∫
E
fdµ > 0 and

that g is probability density on µ satisfying g > 0 µ-a.s. and
there exists a constant c > 0 s.t.

f(x) ≤ c g(x) , µ-a.e.

Note that this implies that c ≥
∫
E
fdµ.

From a practical point of view we have to:

• know the value of the constant c ;

• Y ∼ gµ can be simulated with a reasonable cost ;

• we can compute f
g again at a reasonable cost.

1See http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/SFMT/.
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Let h be a test function, X and Y r.v. with distributions
respectively ν and g.µ.

E[h(X)] =
1∫

E
fdµ

∫
E

h(x)f(x)µ(dx)

=
1∫

E
fdµ

∫
E

h(y)
f

g
(y)g(y)µ(dy)

= E
[
h(Y )

f

g
(Y )

]
.

On the other hand,

E[h(X)] =
c∫

E
fdµ

∫
E

h(y)

(∫ 1

0

1{u≤ 1
c
f
g (y)}du

)
g(y)µ(dy)

=
c∫

E
fdµ

∫
E

∫ 1

0

h(y)1{u≤ 1
c
f
g (y)}g(y)µ(dy)du

=
c∫

E
fdµ

E
[
h(Y )1{U≤ 1

c
f
g (Y )}

]
,

where U ∼ B([0, 1]) and independent from Y .
By considering h ≡ 1 we derive P{cU ≤ f

g (Y )} =
∫
E
fdµ

c .
Finally we show that,

E[h(X)] = E
[
h(Y ) |

{
cU ≤ f

g
(Y )

}]
,

where U ∼ U([0, 1]).

Proposition 1.3 (Acceptance-rejection simulation
method). Let (Un, Yn)n≥1 be a sequence of i.i.d. r.v.
with distribution U([0, 1]) ⊗ PY defined on (Ω,A,P) where
P(dy) = g(y)µ(dy) is the distribution of Y . Set

τ := min{k ≥ 1 : cUkg(Yk) ≤ f(Yk)}.

Then τ has a geometric distribution G∗(p) with parameter
p = P{cU1g(Y1) ≤ f(Y1)} and

X := Yτ ∼ ν.

1.5 Simulation of Gaussian r.v.
1.5.1 Box-Muller method

Proposition 1.4. Let R2 and Θ be two r.v. with distribu-
tions respectively E( 1

2 ) and B([0, 2π]). Then,

X := (R cos Θ, R sin Θ) ∼ N (0, I2).

Proof. Let ϕ be a test function (bounded).

A :=

∫∫
R2

ϕ(x1, x2) exp

(
−x

2
1 + x2

2

2

)
dx1dx2

2π

=

∫∫
ϕ(ρ cos θ, ρ sin θ)e−

ρ2

2 1R∗+(ρ)1[0,2π](θ)ρ
dρdθ

2π

=

∫∫
ϕ(
√
r cos θ,

√
r sin θ)

e−
r
2

2
1R∗+(r)1[0,2π](θ)

dρdθ

2π

= E
[
f
(√

R2 cos Θ;
√
R2 sin Θ

)]
.

Or de facto A = E[f(X1, X2)].

On a avec U1, U2 ∼ U([0, 1]),

(X1, X2) =
√
−2 lnU1 (cos(2πU1), sin(2πU2))

1.5.2 Massaglia method

Let (V1, V2) ∼ U(B(0, 1)), where B(0, 1) is the canonical eu-
clidean unit ball in R2. Set R2 := V 2

1 + V 2
2 and,

X :=

(
V1

√
−2 lnR2

R2
, V2

√
−2 lnR2

R2

)
.

We show that R2 ∼ U([0, 1]), so
√
−2 lnR2 ∼ E

(
1
2

)
and(

V1

R ,
V2

R

)
∼ (cos Θ, sin Θ). We conclude with Box-Muller.

1.6 Simulation of Poisson distributions

The Poisson distribution with parameter λ > 0, denoted
P(λ), is an integral valued probability measure analytically
defined by

P(λ)({k}) = e−λ
λk

k!
,

for all k ∈ N.
To simulate this distribution in an exact way, one relies

on its close connection with the Poisson counting process.
The (normalized) Poisson counting process is the counting
process induced by the Exponential random walk (with pa-
rameter 1). It is defined by

Nt =
∑
n≥1

1Sk≤t ,

for all t ≥ 0, where Sn = X1+· · ·+Xn, (Xi)i an iiid sequence
of r.v. with distribution E(1).

2 Monte Carlo method and applica-
tions to option pricing

2.1 The Monte Carlo method

The Monte Carlo method is based the Strong Law of Large
Numbers (SLLN) and its implementation on a computer. If
X1, . . . , XM is a sequence of independent copies of an inte-
grable r.v. X then,

X̄M (ω) :=
X1(ω) + · · ·+XM (ω)

M
−−−−→
M→∞

E[X1] =: mX .

Remark. To implement the SLLN on a computer one needs
to be able to generate pseudo-random numbers, U ∼
U([0, 1]) ; and then to be able to “represent” X.
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The weak rate of convergence of the SLLN is ruled by
the Central Limit Theorem (CLT) which says that if X is
square integrable then,

√
M(X̄M −mX)

L−−−−→
M→∞

N (0, σ2
X) ,

where σ2
X = Var[X].

Remark. It shows the main drawback of the Monte Carlo
method: it is a slow method since dividing the error by 2
needs to increase the size of the simulation by 4.

We can then try to control the error with a confidence
interval. Assume that σX > 0, the CLT also reads,

√
M
X̄M −mX

σX

L−−−−→
M→∞

N (0, 1).

So we have with a < b, as the normal density has no atom,

lim
M→∞

P
{√

M
X̄M −mX

σX
∈ [a, b]

}
= P{N (0, 1) ∈ [a, b]}

= Φ(b)− Φ(a)/,

where Φ denotes the distribution function of the standard
normal distribution. So now we can design a probabilistic
control of the error directly derived from statistical concepts:
let α ∈]0, 1[ denote a confidence level (close to 1) and let qα
be the two-sided α-quantile defined as the unique solution
to the equation

P{|N (0, 1)| ≤ qα} = α

⇔ 2Φ(qα)− 1 = α.

One defines the theoretical random confidence interval at
level

JαM :=

[
X̄M − qα

σX√
M
, X̄M + qα

σX√
M

]
,

which satisfies,

P{mX ∈ JαM} = P
{∣∣∣∣√M X̄M −mX

σX

∣∣∣∣ ≤ qα}
−−−−→
M→∞

P{|N (0, 1)| ≤ qα} = α.

However, at this stage this procedure remains purely theo-
retical since the confidence interval JM involves the standard
deviation σ2

M of X which is usually unknown.
At this stage we will then evaluate this variance with the

unbiased canonical estimator of the variance:

V̄M =
1

M − 1

M∑
k=1

(Xk − X̄M )2

=
1

M − 1

M∑
k=1

X2
k −

M

M − 1
X̄2
M .

So E[V̄X ] = σ2
X , and with the Slutsky theorem,

√
M
X̄M −mX√

V̄X
=
√
M
X̄M −mX

σ2
X

σ2
X√
VX

L−→ N (0, 1).

Remark. In fact V̄X ∼ χ2(M − 1), and so
√
M X̄M−mX√

V̄X
∼

T (M −1) ; but with M big the Student law is like the stan-
dard Gaussian. And in numerical probability M ≈ 106 so
this approximation makes sense.

Finally, one defines the confidence interval at level α of
the Monte Carlo simulation by

IαM :=

[
X̄M − qα

√
V̄X
M

, X̄M + qα

√
V̄X
M

]
.

2.2 Vanilla option pricing in a Black-
Scholes model

Let us consider a 2-dimensional correlated Black & Scholes
model under its risk neutral probability. The non risky asset
is defined by

dX0
t = rX0

t dt , X0
0 = 1 ,

is the capitalisation of $1 at the bank. Where r is the inter-
est rate. And two risky assets,

dXi
t = Xi

t(r dt+ σi dW i
t ) , i = 1, 2

Xi
0 = xi0.

W = (W 1,W 2) denotes a correlated brownian motion,
d〈W 1,W 2〉 = ρ dt, with ρ ∈ [−1, 1]. Then W 2

t =

ρW 1
t +
√

1− ρ2W̃ 2
t defines the standard 2-dimensional brow-

nian motion (W 1
t , W̃

2
t ). We also define the filtration Ft =

σ(Ws, 0 ≤ s ≤ t).
So for all t ∈ [0, T ],

X0
t = ert

Xi
t = xi0e

(
r−σ

2
i
2

)
t+σiW

i
t
, i = 1, 2

A European vanilla option with maturity T > 0 is an op-
tion related to a European payoff hT := h(XT ) which only
depends on X at time T . In such a complete market the
option premium at time 0 is given by

V0 = e−rTE[h(XT )] ,

and more generally at any time t ∈ [0, T ],

Vt = e−r(T−t)E[h(XT )|Ft] ,

The fact that W has independent stationary increments
implies that X1 and X2 have independent stationary ratios
i.e.

Xi
T

Xi
t

=
Xi
T−t
xi0
⊥⊥ Ft.
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As a consequence if V0 := v(x0, T ), then

Vt = e−r(T−t)E[h(XT )|Ft]

= e−r(T−t)E
[
h

((
Xi
t

Xi
T

Xi
t

)
i

)∣∣∣∣Ft]
= e−r(T−t)E

[
h

((
xit
Xi
T−t
xi0

)
i

)]
= v(xi, T − t).

One can then calculate V0 and easily replace the parameters
for Vt.

Example 2.1 (Best-of call). Let us compute the Monte
Carlo method for a best-of call with strike K, i.e. the pay-
off function

hT = (max(X1, X2)−K)
+
.

We need to write the payoff as a function of independent
uniformly distributed random variables, or equivalently as
a function of independent random variables that are sim-
ple functions of independent uniformly distributed random
variables, namely a centered and normalized Gaussian. In
our case, it amounts to writing

e−rT = ϕ(Z1, Z2)

:=

(
max

(
x1

0e
−σ

2
1
2 T+σ1

√
TZ1

,

x2
0e
−σ

2
2
2 T+σ1

√
T (ρZ1+

√
1−ρ2Z2)

)
−Ke−rT

)+

,

where Z = (Z1, Z2) ∼ N (0, I2). Then, simulating a M -
sample (Zm)1≤m≤M of the N (0, I2) distribution using e.g.
the Box–Müller yields the estimate

Best-of Call0 = E[ϕ(Z1, Z2)]

≈ ϕ̄M :=
1

M

M∑
m=1

ϕ(Zm).

One computes an estimate for the variance using the
same sample

V̄m(ϕ) =
1

M − 1

M∑
m=1

ϕ2(Zm) − M

M − 1
ϕ̄2
M .

2.3 Greeks: a first approach
2.3.1 Background on differentiation of function de-

fined by an integral

Theorem 2.1 (Interchanging differentiation and expecta-
tion). Let (Ω,A,P) be a probability space, let I be a non-
trivial interval of R. Let ϕ : I × Ω → R be a Bor(I) ⊗ A-
measurable function.

(a) Local version. Let x0 ∈ I. If the function ϕ
satisfies:

(i) for every x ∈ I, the random variable ϕ(x, ·) ∈
L1
R(Ω,A,P) ;

(ii) P(dω)-a.s. ∂ϕ
∂x (x0, ω) exists ;

(iii) There exists Y ∈ L1
R+

(P) such that, for every x ∈ I,

P (dω)-a.s. |ϕ(x, ω)− ϕ(x0, ω)| ≤ Y (ω)|x− x0| ,

then the function Φ(x) := E[ϕ(x, ·)] is defined at every x ∈ I,
differentiable at x0 with derivative

Φ′(x0) = E
[
∂ϕ

∂x
(x0, ·)

]
.

(b) Global version. If ϕ satisfies (i) and

(ii) P(dω)-a.s. ∂ϕ
∂x (x, ω) exists at every x ∈ I ;

(iii) There exists Y ∈ L1
R+

(P) such that, for every x ∈ I,

P (dω)-a.s.
∣∣∣∣∂ϕ(x, ω)

∂x

∣∣∣∣ ≤ Y (ω) ,

then the function Φ(x) := E[ϕ(x, ·)] is defined and differen-
tiable at every x ∈ I, with derivative

Φ′(x) = E
[
∂ϕ

∂x
(x, ·)

]
.

Exercise 2.2. Let Z ∼ N (0, 1) defined on a probabil-
ity space (Ω,A,P), ϕ(x, ω) = (x − Z(ω))+ and Φ(x) =
E[ϕ(x− Z)+, x ∈ R.

1. Show that Φ is differentiable on the real line and com-
pute its derivative.

2. Show that if I denotes a non-trivial interval of R. Show
that if ω ∈ {Z ∈ I} (i.e. Z(ω) ∈ I), the function
x 7→ (x − Z(ω))+ is never differentiable on the whole
interval I.

Proof. 1. We have the set {ω : ∂ϕ
∂x (x0, ω) exists = {ω :

X(ω) 6= x0}. And P{X 6= x0} = 1 − P{X = x0} = 1
as X has a density. Furthermore, for all x ∈ I we have
|ϕ(x, ω)− ϕ(x,ω)| ≤ |x− x0|, so Y ≡ 1 ∈ L1.

2. Let I = [a, b], with −∞ < a < b < ∞, and we have
∂ϕ
∂x (x0, ω) = 1{x0≥X(ω)} iff X(ω) 6= x0. So we have the
set {ω : ∂ϕ∂x (x0, ω) exists ∀x0 ∈ I} = {X(ω) 6∈ I}, and
P{X 6∈ I} = 1 would imply P{X ∈ I} = 0 which is
absurd. So we don’t have the global derivate.
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2.3.2 Working on the scenarios space

Let us consider the BS model,

dXx
t = Xx

t (r dt + σ dWt) , Xx
0 = x > 0 ,

so we have Xx
t = xe

(
r−σ22

)
t+σWt . And let us define for

every x ∈]0,∞[,

Φ(x) = E[ϕ(Xx
t )] ,

where ϕ : R∗+ → R. We will first work on the scenarii space
(Ω,A,P), because this approach contains the “seed” of meth-
ods that can be developed in much more general settings in
which the SDE has no explicit solution like it has in the
Black-Scholes model. On the other hand, as soon as an ex-
plicit expression is available for the density pT (x, y) of Xx

T ,
it is more efficient to use the next section 2.3.3.

Proposition 2.2. (a) If ϕ :]0,∞[→ R is differentiable and
ϕ′ has polynomial growth (i.e. |ϕ′| ≤ C(1+|x|p) with C ≥ 0,
p > 0), then the function Φ is differentiable and for all
x > 0,

Φ′(x) = E
[
ϕ′(Xx

T )
Xx
T

x

]
. (2.1)

(b) If ϕ is differentiable outside a countable set and is locally
Lipschitz continuous with polynomial growth in the following
sense

∃m > 0 ,∀u, v ∈ R∗+ ,

|ϕ(u)− ϕ(v)| ≤ C|u− v|(1 + |u|m + |v|m) ,

then Φ is differentiable everywhere on R∗+ and Φ′ is given
by (2.1). (c) If ϕ simply a Borel function with polynomial
growth, then Φ is still differentiable and for all x > 0,

Φ′(x) = E
[
ϕ(Xx

T )
WT

xσT

]
. (2.2)

Proof.

2.3.3 Direct differentiation on the state space

In fact, one can also achieve similar computations directly
on the state space of a family of random variables (or vec-
tors) Xx

T (indexed by its stating value x), provided this ran-
dom variable (or vector) has an explicit probability density
pT (x, y) with respect to a reference measure µ(dy) on the
real line (or Rd). In general µ = λd, Lebesgue measure.

One may imagine in full generality that Xx
T depends on a

parameter θ a real parameter of interest : thus, Xx
T = Xx

T (θ)
may be the solution at time T to a stochastic differential
equation which coefficients depend on θ.

Φ(θ) = E[ϕ(Xx
T (θ))]

=

∫
R
ϕ(y)pT (θ, x, y)µ(dy).

So that,

Φ′(θ) =

∫
R
ϕ(y)

∂pT
∂θ

(θ, x, y)µ(dy)

=

∫
R
ϕ(y)

∂pT
∂θ (θ, x, y)

pT (θ, x, y)
pT (θ, x, y)µ(dy)

= E
[
ϕ(y)

∂ ln pT
∂θ

(θ, x,Xx
T )

]
.

Of course, the above computations need to be supported by
appropriate assumptions (domination, etc.) to justify inter-
change of integration and differentiation.

3 Variance reduction

3.1 The Monte Carlo method revisited

Recall that for the MC method the confidence interval is

Iα,M =

[
X̄M ± qα

√
V̄M
M

]
,

with the notations of 2.1. If we associate the precision ε to
the confidence level α we can deduce the minimum number
of computations

M(ε, α) =
q2
αVar[X]

ε2

As a first conclusion, this shows that, a confidence level be-
ing fixed, the size of a Monte Carlo simulation grows linearly
with the variance of X for a given accuracy and quadrati-
cally as the inverse of the prescribed accuracy for a given
variance.

Usually, the problem appears as follows: there exists a
random variable ξ ∈ L2

R(Ω,A,P) such that

(i) E[ξ] can be computed at a very low cost by a determin-
istic method (closed form, numerical analysis method)
;

(ii) the random variable X − ξ can be simulated with the
same cost (complexity) than X ;

(iii) the variance Var[X − ξ] < Var[X].

Then the r.v.

X ′ := X − ξ + E[ξ]

can be simulated at the same cost as X.

Definition 3.1 (Control variate). A r.v. ξ satisfying (i)-
(ii)-(iii) is called a control variate for X.
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3.1.1 Jensen’s inequality and variance reduction

Proposition 3.1 (Jensen’s Inequality). Let X be a random
variable and let g : R→ R be a convex function. Suppose X
and g(X) are integrable. Then, for any subfield B of A,

g (E[X|B]) ≤ E [g(X)|B] , P− a.s.

Proof. Immediate with the following characterization of a
convex function:

g(x) = sup
a,b∈Q
ϕa,b≤g

φa,b(x) ,

for all x ∈ R, where ϕa,b(x) = ax+ b.

Example 3.1 (Basket or index option). We consider a pay-
off on a basket of d (positive) risky assets (this basket can
be an index). For the sake of simplicity we suppose it is a
call with strike K i.e.

hT =

(
d∑
k=1

αiX
i
T − K

)+

where (X1, . . . , Xd) models the price of d traded risky as-
sets on a market and the αk are some positive (αi > 0)
weights satisfying

∑d
i=1 αi = 1. Then the convexity of the

exponential implies that

0 ≤ e
∑d
k=1 αi lnXiT ≤

d∑
k=1

αiX
i
T

so that

hT ≥ kT :=
(
e
∑d
k=1 αi lnXiT

)+

≥ 0

The correlated d-dimensional Black-Scholes model (un-
der the risk-neutral probability measure with r > 0 denot-
ing the interest rate) can be defined by the following system
of SDE’s which governs the price of d risky assets denoted
i ∈ J1, dK:

dXi
t = Xi

t

r dt+

q∑
j=1

σij dW j
t

 ,

where W = (W 1, . . . ,W q) is a standard q-dimensional
Brownian motion and σ = [σij ]1≤i≤d

1≤j≤q
is a is given by d × q

matrix with real entries. Its solution

Xi,xi
t = xi exp

(r − σ2
i·
2

)
t+

q∑
j=1

σij dW j
t

 ,

where σ2
i· =

∑q
j=1 σ

2
ij for i ∈ J1, dK.

We will now show that ξ := e−rT kT is a pseudo-control
variate.

Example 3.2 (Asian options and Kemna-Vorst control vari-
ate). Let

hT = ϕ

(
1

T

∫ T

0

Xx
T dt

)
be a generic Asian payoff where ϕ is non-negative, non-
decreasing function defined on R+ and let Xx

t follow a regu-
lar Black-Scholes dynamic where we note µ := r− σ2

2 . Then
the Jensen inequality implies

1

T

∫ T

0

Xx
t dt ≥ x exp

(
1

T

∫ T

0

µt+ σWt dt

)

= x exp

(
µ
T

2
+ σ

1

T

∫ T

0

Wt dt

)
.

We can show that

1

T

∫ T

0

Wt dt ∼ N
(

0,
T

3

)
.

So we want to write the right hand side of the equality in a
BS asset style i.e.

xeαT exp

((
r −

σ2

3

2

)
T + σ

1

T

∫ T

0

Wt dt

)

where α = −
(
r
2 + σ2

12

)
. This naturally leads to introduce

the so-called Kemna-Vorst (pseudo-)control variate

kKVT := ϕ

(
xeαT exp

((
r − σ2

3

1

2

)
T + σ

1

T

∫ T

0

Wt dt

))

3.1.2 Antithetic method

In this section we assume that X and X ′ have not only
the same expectation mX but also the same variance, i.e.
Var[X] = Var[X ′], and can be simulated with the same com-
plexity κ = κX = κX′ . In such a situation, choosing between
X or X ′ may seem a priori a question of little interest but
we can take advantage of this. Set

χ :=
X +X ′

2
,

it is reasonable to think that κχ ≈ 2κ. And we have

Var[χ] =
Var[X] + Cov(X,X ′)

2
.

So in term of complexity we will prefer χ to X iff

κχVar[χ] ≤ κVar[X]

⇔ 2κ
Var[X] + Cov(X,X ′)

2
≤ κVar[X]

⇔ Cov(X,X ′) ≤ 0.

To use this remark in practice, one usually relies on the
following result.
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Proposition 3.2 (Co-monotony). Let Z : (Ω,A,P)→ R be
a random variable and let ϕ, φ : R → R be two monotone
(hence Borel) functions with the same monotony. Assume
that ϕ(Z), φ(Z) ∈ L2

R(Ω,A,P). Then

Cov(ϕ(Z), ψ(Z)) ≥ 0.

If, mutatis mutandis, ϕ and φ have opposite monotony, then

Cov(ϕ(Z), ψ(Z)) ≤ 0.

3.2 Regression based control variate

3.2.1 Optimal mean square control variate

We come back to the original situation of two square inte-
grable random variables X and X ′, having the same expec-
tation E[X] = E[X ′] = m, with nonzero variances and we
assume that X and X ′ are not identical which is equivalent
to Var[X −X ′] > 0.

This time we simply (and temporarily) set ξ := X −X ′.
The idea is simply to parametrize the impact of the control
variate ξ by a factor λ i.e. we set for every λ ∈ R,

Xλ = X − λξ.

Then the strictly convex parabolic function Φ defined by

Φ(λ) := Var[Xλ]

= λ2Var[ξ]− 2λCov(X, ξ) + Var[X]

reaches its minimum λmin with

λmin :=
Cov(X, ξ)

Var[ξ]
.

Consequently

σ2
min := Var[Xλmin ]

= Var[X]− Cov(X, ξ)2

Var[ξ]

= Var[X ′]− Cov(X ′, ξ)2

Var[ξ]
,

so that σ2
min ≤ min(Var[X],Var[X ′]) and σ2

min = Var[X] iff
Cov(X, ξ) = 0.

3.2.2 Implementation of the variance reduction

Let (Xk, X
′
k)k≥1 be an i.i.d. sequence of random vectors

with the same distribution as (X,X ′) and let λ ∈ R. Set for
every k ≥ 1

ξk := Xk −X ′k ,
Xλ
k := Xk − λξk.

Now we set for every size M ≥ 1 of simulation

VM :=
1

M

M∑
k=1

ξ2
k , (3.1)

CM :=
1

M

M∑
k=1

Xkξ
2
k , (3.2)

λM :=
CM
VM

. (3.3)

The batch method The strong law of large numbers im-
plies that both VM

a.s.−−−−→
M→∞

Var[ξ] and CM
a.s.−−−−→

M→∞
Cov[X, ξ]

so that λM
a.s.−−−−→

M→∞
λmin. This suggests to introduce the

batch estimator of m, defined for every size M ≥ 1 of the
simulation by

X̄λM
M :=

1

M

M∑
k=1

XλM
k

= X̄M − λMξM .

Proposition 3.3. The batch estimator a.s. converges to m
(consistency) i.e.

X̄λM
M

a.s.−−−−→
M→∞

E[X] = m,

and satisfies a CLT (asymptotic normality) with an optimal
asymptotic variance σ2

min i.e.

√
M
(
X̄λM
M −m

)
L−−−−→

M→∞
N (0, σ2

min).

Remark. However, note that the batch estimator is a biased
estimator of m since E[λM ξ̄M ] 6= 0.

The adaptive unbiased approach Another approach is
to design an adaptive estimator of m by considering at each
step k the (predictable) estimator λk−1 of λmin.

Theorem 3.4. Assume X,X ′ ∈ L2+δ(P) for some δ > 0.
Let (Xk, X

′
k)k≥1 be an i.i.d. sequence with the same distri-

bution as (X,X ′). We set for every k ≥ 1

X̃k = Xk − λ̃k−1ξk

= (1− λ̃k−1)Xk + λ̃k−1X
′
k ,

where λ̃k = (−k) ∨ (λk ∧ k). And λk is defined by (3.3).
Then the adaptive estimator of m defined by

X̄ λ̃
M :=

1

M

M∑
k=1

X̃k

is unbiased, convergent and asymptotically normal with min-
imal variance.
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3.3 Application to option pricing
The variance reduction by regression introduced in the for-
mer section still relies on the fact that κX ≈ κX−λξ or,
equivalently that the additional complexity induced by the
simulation of ξ given that of X is negligible. This condition
may look demanding but we will see that in the framework of
derivative pricing this requirement is always fulfilled as soon
as the payoff of interest satisfies a so-called parity equation.

For a vanilla option the call-put parity is

C0 − P0 = S0 − e−rTK ,

so that C0 = E[X] = E[X ′] with

X := e−rT (ST −K)+ ;

X ′ := e−rT (K − ST )+ + S0 − e−rTK.

Note that the simulation of X involves that of ST so
that the additional cost of the simulation of ξ is definitely
negligible.

3.4 Pre-conditioning
The principle of the pre-conditioning method – also known
as the Blackwell-Rao method – is based on the very defini-
tion of conditional expectation.

For every subfield B ⊂ A

E[X] = E [E[X|B]]

and

Var[E[X|B]] = E
[
E[X|B]2

]
− E[X]2

≤ E
[
X2
]
− E[X]2 = Var[X].

The archetypal situation is the following: assume X =
g(Z1, Z2), where Z1 ⊥⊥ Z2. We have E[X] = E[G(Z2)] where

G(z2) = E[g(Z1, Z2)|Z2 = z2]

= E[g(Z1, z2)].

At this stage, the pre-conditionning method can be imple-
mented as soon as the following conditions are satisfied:

• a closed form is available for the function G and

• (the distribution of) Z2 can be simulated with the
same complexity as (the distribution of) X.

Example 3.3 (Exchange spread options). Let Xi
T =

xi exp
((
r − σ2

i

2

)
T + σiW

i
T

)
, xi, σi > 0, i = 1, 2, be two

“Black-Scholes” assets at time T related to two Brownian
motions W i

T , i = 1, 2, with correlation ρ ∈ [−1, 1]. One
considers an exchange spread options with strike K i.e. re-
lated to the payoff

hT = (X1
T −X2

T −K)+.

Then on can write (W 1
T ,W

2
T ) =

√
T (
√

1− ρ2Z1 + ρZ2, Z2),
where (Z1, Z2) ∼ N (0, I2). Then

E[e−rThT ] = e−rTE[E[hT |Z2]]

with a smaller variance than the original payoff.

3.5 Stratified sampling
Let us define the r.v. X : (Ω,A,P)→ (E, E).

Definition 3.2 (Strata). We define a strata as (Ai)i∈I a
finite partition of the space E, i.e. Ai∩Aj = ∅ for all i 6= j,⋃
i∈I Ai = Ω.

For this method we have to know:

(i) pi = P{X ∈ Ai}, i ∈ I.

(ii) how to simulate X|X ∈ Ai, i.e., X|X ∈ Ai ∼ ϕi(U),
i ∈ I, ϕi = [0, 1]ri → E, U ∼ U([0, 1]ri), ri ∈ N∪{∞}.

Then with F : (E, E)→ (R,B(R)),

E[F (X)] =
∑
i∈I

E[F (X)1{X∈Ai}]

=
∑
i∈I

E[F (X)|X ∈ Ai]P{X ∈ Ai}

=
∑
i∈I

E [F (ϕi(U))] pi.

Then the estimator is

ÎM =
∑
i∈I

pi
1

Mi

Mi∑
k=1

F (ϕi(U
i
k))

=
1

M

∑
i∈I

pi
qi

Mi∑
k=1

F (ϕi(U
i
k)) ,

with qi = Mi

M , M =
∑
iMi the total budget. Then we have

Var[ÎM ] =
1

M

∑
i∈I

p2
i

qi
Var[F (ϕi(U))]︸ ︷︷ ︸

=: σ2
F,i

.

We then have the optimizing problem

min∑
qi=1
qi>0

∑
i

p2
i

qi
σ2
F,i.

3.5.1 Sub-optimal choice

We will take qi = pi,

Var[ÎM ] =
1

M

∑
i

piσ
2
F,i

=
1

M

∑
i

P{X ∈ Ai}

×E[(F (X)− E[F (X)|X ∈ Ai])2|X ∈ Ai]

=
1

M
E

[
F (X)−

∑
i

E[F (X)|X ∈ Ai]1{X∈Ai}

]2

=
1

M
‖X − E[F (X)|σ({X ∈ Ai})]‖22

≤ 1

M
‖X − E[F (X)‖22 =

Var[F (X)]

M
.
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So this choice always reduces the variance of the estima-
tor since we assumed that the stratification is not trivial. It
corresponds in the opinion poll world to the so-called quota
method.

3.5.2 Optimal choice

We can write

∑
i

p2
i

qi
σ2
F,i =

(∑
i

(
pi√
qi
σF,i

)2
)(∑

i

√
qi

2

)

≥

(∑
i

pi√
qi
σF,i
√
qi

)2

,

with the equality iff ∃λ s.t. pi√
qi
σF,i = λ

√
qi, i.e.

q∗i =
piσF,i
λ

=
piσF,i∑
j pjσF,j

.

The problem is that the σF,i are in the formula, hence q∗ is
hard to explicit, and the complexity is actually greater.

3.6 Importance sampling
We still have X : (Ω,A,P) → (E, E) and its density
PX = fµ where µ is a reference measure. Let h ∈ L1(PX),

E[h(X)] =

∫
E

h(x)f(x)µ(dx).

Now if we have Y , PY = gµ, g > 0, that can be simulated,

E[h(X)] =

∫
E

h(x)
f(x)

g(x)
g(x)µ(dx)︸ ︷︷ ︸

PY (dx)

= E
[
h
f

g
(Y )

]
.

We will then take Y to calculate E[h(X)] = E[h fg (Y )] if

Var[h
f

g
(Y )] < Var[h(X)]

⇔ E

[(
h
f

g

)2

(Y )

]
< E[h2(X)].

But we have

E

[(
h
f

g

)2

(Y )

]
=

∫
h2(y)

f2(y)

g2(y)
g(y)µ(dy)

= E
[
h2(X)

f(X)

g(X)

]
hence we will adopt Y iff E

[
h2(X) fg (X)

]
< E[h2(X)].

In practice we introduce (Yθ)θ∈Θ with E [h(X)] =

E
[
h(Yθ)

f(Yθ)
g(Yθ)

]
. The problem becomes a parametric opti-

mization problem, typically solving the minimization prob-
lem

min
θ∈Θ

{
E

[(
h
f

gθ
(Yθ)

)2
]

= E
[
h2(X)

f

gθ
(X)

]}

4 The Quasi-Monte Carlo method

4.1 Motivation and definitions
Definition 4.1 (Weak convergence). Let (µn)n be a se-
quence of probability measures and µ a probability mea-
sure. The sequence (µn)n weakly converges to µ (denoted
µn =⇒ µ) if for every bounded function f ,∫

f dµn −−−−→
n→∞

∫
f dµ.

Theorem 4.1 (Glivenko–Cantelli). If (Un)n is an i.i.d. se-
quence of uniformly distributed r.v. on [0, 1]d, then

1

n

n∑
k=1

δUk(ω) =⇒ λd|[0,1]d = U([0, 1]d).

That is to say, ∀f ∈ C([0, 1]d,R),

1

n

n∑
k=1

f(Uk) −−−−→
n→∞

∫
[0,1]d

f(x)λd(dx).

Definition 4.2. We note the box Jx, yK defined for every
x = (x1, . . . , xd), y = (y1, . . . , yd) ∈ [0, 1]d, x ≤ y (2), by

Jx, yK := {ξ ∈ [0, 1]d, x ≤ ξ ≤ y}.

Theorem 4.2 (Portemanteau). Let (ξn)n be a [0, 1]d-valued
sequence. The following assertions are equivalent.

(i) (ξn)n is uniformly distributed on [0, 1]d.

(ii) For every x ∈ [0, 1]d,

1

n

n∑
k=1

1J0,xK(ξk) −−−−→
n→∞

λd(J0, xK) =

d∏
i=1

xi.

(iii) (“Discrepancy at the origin”)

D∗n(ξ) := sup
x∈[0,1]d

∣∣∣∣∣ 1n
n∑
k=1

1J0,xK(ξk)−
d∏
i=1

xi

∣∣∣∣∣
−−−−→
n→∞

0.

(iv) (“Extreme discrepancy”)

D∞n (ξ) := sup
x,y∈[0,1]d

∣∣∣∣∣ 1n
n∑
k=1

1Jx,yK(ξk)−
d∏
i=1

(yi − xi)

∣∣∣∣∣
−−−−→
n→∞

0.

2This order relation if defined by: x ≤ y if xi ≤ yi, 1 ≤ i ≤ d.
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(v) (Weyl’s criterion) For every integer p ∈ Nd \ {0}

1

n

n∑
k=1

e2iπ(p|ξk) −−−−→
n→∞

0.

(vi) (Bounded Riemann integrable function) For every
bounded continuous function f : [0, 1]d → R,

1

n

n∑
k=1

f(ξk) −−−−→
n→∞

∫
[0,1]d

f(x)λd(dx).

Proof.

4.2 Application to numerical integration:
functions with finite variations

Definition 4.3. A function f : [0, 1]d → R has finite varia-
tion in the measure sense if there exists a signed measure ν
s.t. ν({0}) = 0 and ∀x ∈ [0, 1]d,

f(x) = f(1) + ν(J0,1− xK).

The variation V (f) is defined by

V (f) := |ν|([0, 1]d) ,

where |ν| is the variation measure of ν.

Theorem 4.3 (Koksma–Hlawka). Let ξ = (ξ1, . . . , ξn) be a
n-tuple of [0, 1]d-valued vectors and let f : [0, 1]d → R be a
function with finite variation in the measure sense. Then,∣∣∣∣∣ 1n

n∑
k=1

f(ξk)−
∫

[0,1]d
f(x)λ(dx)

∣∣∣∣∣ ≤ V (f)D∗n(ξ).

Proof.

Remark. It’s actually very rare to find a funciton that
has variation finite in the measure sense. For example
f(x1, x2) = (x1 +x2)∧1 has variation finite, but it’s not the
case for f(x1, x2, x3) = (x1 + x2 + x3) ∧ 1.

4.3 Sequences with low discrepancy
4.3.1 Back to MC on [0, 1]d

Let (Un)n be an i.i.d. sequence of r.v. uniformly dis-
tributed on [0, 1]d. So it’s natural to evaluate its discrepancy
D∗n ((Uk)k≥1) and to wonder at which rate it goes to zero.

Theorem 4.4 (Chung). (i) CLT for the star discrep-
ancy. We have

√
nD∗n ((Uk)k≥1)

L−→ sup
x∈[0,1]d

|Zdx | ,

where (Zdx)x∈[0,1]d denotes the centred Gaussian multi-
index with covariance given by x = (x1, . . . , xd), y =

(y1, . . . , yd) ∈ [0, 1]d, Cov(Zdx , Z
d
y ) =

∏d
i=1 x

i ∧ yi −(∏d
i=1 x

i
)(∏d

i=1 y
i
)
. And

E
[√
nD∗n ((Uk)k≥1)

]
−→ E

[
sup

x∈[0,1]d
|Zdx |

]
.

(ii) LIL for the star discrepancy. We have

lim sup
n

√
2n

ln lnn
D∗n ((Uk)k≥1) = 1.

At this stage we have a first definition for a sequence
with low discrepancy, ξ s.t.

D∗n(ξ) = o

(√
ln lnn

n

)
, when n→∞.

Which means that its implementation with a function with
finite variation will speed up the estimation with respect to
the MC simulation.

4.3.2 Röth’s lower bound

There exists a universal constant cd ∈]0,∞[ s.t. for any
[0, 1]d-valued n-tuple (ξ1, . . . , ξn),

D∗n(ξ) ≥ cd
ln

d−1
2 n

n
.

Definition 4.4. A [0, 1]d-valued sequence (ξn)n≥1 is a se-
quence with low discrepancy if

D∗n(ξ) = O

(
lnd n

n

)
, as n→∞.

4.3.3 Examples of sequences

Van des Corput Let p1, . . . , pd be the first d prime num-
bers. The d-dimensional VdC sequence is defined, ∀n ≥ 1,
by:

ξn = (Φp1(n), . . . ,Φpd(n)) ,

where the radical inverse functions Φp are defined by

Φp(n) =

r∑
k=0

ak
pk+1

,

with n = a0+a1p+· · ·+arpr, ai ∈ J0, p−1K, ar 6= 0, denotes
the p-adic expansion of n. Then for every n ≥ 1,

D∗n(ξ) ≤ 1

n

(
1 +

d∏
i=1

(
(pi − 1)

⌊
ln(pin)

ln pi

⌋))

= O

(
lnd n

n

)
, as n→∞.

Kakutani
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Faure Let p be the smallest prime integer s.t. p ≥ d. The
d-dimensional Faure sequence is defined for every n ≥ 1, by

ξn =
(
Φp(n− 1), Cp(Φp(n− 1)), . . . , Cd−1

p (Φp(n− 1))
)

where Φp still denotes the radical inverse, and for every
p-adic rational number u with (regular) p-adic expansion
u =

∑
k≥0 ukp

−(k+1) ∈ [0, 1]

Cp(u) =
∑
k≥0

∑
j≥k

(
j

k

)
uj mod p

 p−(k+1).

These sequences’ discrepancy at the origin satisfies

D∗n(ξ) ≤ 1

n

(
1

d!

(
p− 1

2 ln p

)d
lnd p+O

(
lnd−1 n

))
.

Sobol’

Niederraiter

5 Discretization scheme(s) of a
Brownian diffusion

One considers a d-dimensional Brownian diffusion process
(Xt)t∈[0,T ] solution to the following SDE

dXt = b(t,Xt) dt + σ(t,Xt) dWt , (5.1)

where b : [0, T ] × Rd → Rd, σ : [0, T ] × Rd → Md,q(R) are
continuous functions, (Wt)t∈[0,T ] denotes a q-dimensional
standard Brownian motion defined on a probability space
(Ω,A,P) and X0 : (Ω,A,P)→ Rd is a random vector, inde-
pendent of W .

We assume that b and σ are Lipschitz continuous contin-
uous in x uniformly with respect to t, i.e. ∀t ∈ [0, T ], ∀x, y ∈
Rd,

|b(t, x)− b(t, y)|+ ‖σ(t, x)− σ(t, y)‖ ≤ K|x− y|.(5.2)

Theorem 5.1. Under the above assumptions on b, σ, X0

and W , the above SDE has a unique (Ft)-adapted solution
X = (Xt)t∈[0,T ] defined on the probability space (Ω,A,P),
starting from X0 at time 0, in the following sense: P-a.s.
∀t ∈ [0, T ],

Xt = X0 +

∫ t

0

b(s,Xs) ds +

∫ t

0

σ(s,Xs) dWs.

This solution has P-a.s. continuous paths.

5.1 Euler–Maruyama schemes

5.1.1 Discrete time

The discrete time Euler scheme is defined by

X̄n
tnk+1

= X̄n
tnk

+
T

n
b(tnk , X̄

n
tnk

)

+ σ(tnk , X̄
n
tnk

)
(
Wtnk+1

−Wtnk

)
(5.3)

= X̄n
tnk

+
T

n
b(tnk , X̄

n
tnk

) + σ(tnk , X̄
n
tnk

)

√
T

n
Unk ,

X̄0 = X0, k ∈ J0, n−1K. Where tnk := kT
n and (Uk)k denotes

a sequence of i.i.d. N (0, Iq)-distributed random vectors.

5.1.2 Stepwise constant

For convenience, we denote from now on

¯
t := tnk if t ∈ [tnk , t

n
k+1[.

The stepwise constant Euler scheme, denoted (X̃t)t∈[0,T ]

for convenience, is defined by

X̃n
t = X̄n

¯
t , t ∈ [0, T ].

5.1.3 Genuine (continuous)

At this stage it is natural to extend the definition (5.3) of
the Euler scheme at every instant t ∈ [0, T ] by interpolating
the drift with respect to time and the diffusion coefficient
with respect to the Brownian motion, namely

X̄t = X̄n

¯
t + (t−

¯
t)b(

¯
t, X̄n

¯
t )

+ σ(
¯
t, X̄n

¯
t )(Wt −W

¯
t) (5.4)

= X̄n

¯
t +

∫ t

¯
t

b(
¯
s, X̄n

¯
s ) ds +

∫ t

¯
t

σ(
¯
s, X̄n

¯
s ) dWs.

And then by concatenation,

X̄t = X0 +

∫ t

0

b(
¯
s, X̄n

¯
s ) ds +

∫ t

0

σ(
¯
s, X̄n

¯
s ) dWs.

5.2 Strong error rate and polynomial mo-
ments

5.2.1 Main results and comments

We consider the SDE and its Euler–Maruyama scheme(s) as
defined by (5.1) and (5.3), (5.4).

Polynomial moment control

Proposition 5.2. Assume that the coefficients b and σ of
the SDE (5.1) are Borel functions that simply satisfy the
following linear growth assumption: ∀t ∈ [0, T ], ∀x ∈ Rd,

|b(t, x)| + ‖σ(t, x)‖ ≤ C(1 + |x|) (5.5)
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for some real constant C > 0 and a “horizon” T > 0. Then,
for every p ∈ [1,∞[, there exists a universal positive real
constant κp such that every strong solution (Xt)t∈[0,T ] (if
any) satisfies∥∥∥∥∥ sup

t∈[0,T ]

|Xt|

∥∥∥∥∥
p

≤ 2eκpCT (1 + ‖X0‖p)

and, for every n ≥ 1, the Euler scheme with step T
n satisfies∥∥∥∥∥ sup

t∈[0,T ]

|X̄n
t |

∥∥∥∥∥
p

≤ 2eκpCT (1 + ‖X0‖p) .

Uniform convergence rate in Lp(P) First we introduce
the following condition (Hβ

T ) which strengthens Assumption
(5.2) by adding a time regularity assumption of the Hölder
type:

(Hβ
T ) ≡


∃β ∈ [0, 1], ∃Cb,σ,T > 0 s.t.
∀s, t,∈ [0, T ], ∀x ∈ Rd ,

|b(t, x)− b(s, x)|+ ‖σ(t, x) + σ(s, x)‖
≤ Cb,σ,T (1 + |x|)|t− s|β .

Theorem 5.3 (Strong Rate for the Euler scheme). (a) Con-
tinuous Euler scheme. Suppose the coefficients b and σ of the
SDE (5.1) satisfy (5.2) the above regularity condition (Hβ

T )
for a real constant Cb,σ,T > 0 and an exponent β ∈]0, 1].
Then the continuous Euler scheme (X̄n

t )t∈[0,T ] converges to-
ward (Xt)t∈[0,T ] in every Lp(P), p > 0, such that X0 ∈ Lp ,
at a O(n−( 1

2∧β))-rate. To be precise, there exists a universal
constant κp > 0 only depending on p such that, for every
n ≥ T ,∥∥∥∥∥ sup
t∈[0,T ]

|Xt − X̄n
t |

∥∥∥∥∥
p

≤ K(p, b, σ, T )(1 + ‖X0‖p)
(
T

n

)β∧ 1
2

(b) Stepwise constant Euler scheme. As soon as b and σ
satisfy the linear growth assumption (5.5) with a real con-
stant L := Lb,σ,T > 0, then, for every p ∈ [1,∞[ and every
n ≥ T ,∥∥∥∥∥ sup
t∈[0,T ]

|X̄n
t − X̄n

¯
t |

∥∥∥∥∥
p

≤ κ̃peκ̃pLT (1 + ‖X0‖p)
√
T (1 + lnn)

n
.

where κ̃p > 0 is a positive real constant only depending on p
(and increasing in p).

5.3 Milstein scheme

5.3.1 The 1-dimensional setting

We are still in the setting

dXt = b(Xt) dt + σ(Xt) dWt.

We have d = 1, q = 1, and we want to work on the ap-
proximation of

∫ tk+1

tk
σ(Xs) dWs. So Itô’s formula on σ ∈ C2

gives us

σ(Xs) = σ(Xtk)︸ ︷︷ ︸
=: (1)

+

∫ s

tk

σ′(Xu)σ(Xu) dWs︸ ︷︷ ︸
=: (2)

+

∫ s

tk

(
b(Xu)σ′(Xu) +

1

2
σ′′(Xu)σ2(Xu)

)
du︸ ︷︷ ︸

=: (3)

We have for the first and third term,

E

[(∫ tk+1

tk

(1) dWs

)2
]

= E[σ2(Xtk)]︸ ︷︷ ︸
<∞

E[(Wtk+1
−Wtk)2]︸ ︷︷ ︸

= T
n

E

[(∫ tk+1

tk

(3) dWs

)2
]

= E
[∫ tk+1

tk

(3)2 ds

]

= O

((
T

n

)2
)
.

So we will see that both expressions are negligible compared
to the second term:

(2) =

∫ s

tk

(σσ′(Wu)− σσ′(Wtk)) dWu

+ σσ′(Wtk)(Ws −Wtk) ,

so that∫ tk+1

tk

(2) dWs = σσ′(Xtk)

∫ tk+1

tk

(Ws −Wtk) dWs

+

∫ tk+1

tk

∫ s

tk

(σσ′(Xu) + σσ′(Xtk)︸ ︷︷ ︸
= o(1)

)dWu dWs

︸ ︷︷ ︸
negligible

≈ σσ′(Xtk)
1

2

(
(Wtk+1

−Wtk)2 − (tk+1 − tk)
)
.

So we deduce the Milstein scheme:

X̃mil
0 = X0 ;

X̃mil
tk+1

= X̃mil
tk

+

(
b(X̃mil

tk
)− 1

2
σσ′(X̃mil

tk
)

)
T

n

+ σ(X̃mil
tk

)

√
T

n
Uk+1 +

1

2
σσ′(X̃mil

tk
)
T

n
U2
k+1 ,

where Uk =
√

n
T (Wtn −Wtn−1) ∼ N(0, 1). It is then easy

to write the continuous scheme.

Theorem 5.4 (Strong rate for the Milstein scheme). (a)
Assume that b and σ are C1 on R with bounded and Lips-
chitz derivatives. Then, for every p ∈ [1,∞[, there exists a
real constant Cb,σ,T,p > 0 such that∥∥∥∥ max

k∈J0,nK

∣∣∣Xtk − X̃mil
tk

∣∣∣∥∥∥∥
p

≤ Cb,σ,T,p
T

n
(1 + ‖X0‖p).
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(b) As concerns the stepwise constant Milstein scheme, one
has∥∥∥∥∥ sup
t∈[0,T ]

∣∣∣Xt − X̃mil

¯
t

∣∣∣∥∥∥∥∥
p

≤ Cb,σ,T,p(1 + ‖X0‖p)
√
T

n
(1 + lnn).

5.3.2 Higher dimensional Milstein scheme

In higher dimension when the underlying diffusion process
(Xt)t∈[0,T ] is d-dimensional or the driving Brownian motion
W is q-dimensional which means that the drift is a function
b : Rd → Rd and the diffusion coefficient σ = [σij ] : Rd →
Md,q(R), the same reasoning as in the 1-dimensional setting
leads to the following (discrete time) scheme.

X̃mil
0 = X0 ;

X̃mil
tk+1

= X̃mil
tk

+
T

n
b(X̃mil

tk
) + ∆Wtk+1

σ∗(X̃mil
tk

)

+
∑

1≤i,j≤q

∂σ·iσ·j(X̃
mil
tk

)

∫ tk+1

tk

(W i
s −W i

tk
) dW j

s

where ∆Wtk+1
:= Wtk+1

−Wtk , σ·k denotes the k-th column
of σ, and ∀x = (x1, . . . , xd) ∈ Rd,

∂σ·iσ·j(x) :=

d∑
l=1

∂σ·i
∂xl

(x)σl,j(x).

Here the hard part to simulate is the joint q2-dimensional
distribution(

W 1
t , . . . ,W

d
t ,

∫ t

0

W i
s dW j

s , 1 ≤ i, j ≤ q, i 6= j

)
.

Proposition 5.5. If the rectangular terms commute, i.e. if
∀i 6= j,

∂σ·iσ·j = ∂σ·jσ·i ,

then the Milstein scheme reduces to

X̃mil
tk+1

= X̃mil
tk

+
T

n

(
b(X̃mil

tk
)− 1

2

q∑
i=1

∂σ·iσ·i(X̃
mil
tk

)

)
+ σ(X̃mil

tk
)∆Wtk+1

+
1

2

∑
1≤i,j≤q

∂σ·iσ·j(X̃
mil
tk

)∆W i
tk+1

∆W j
tk+1

.

5.4 Weak error for the Euler scheme
We recall that our problem is to calculate E[ϕ(XT )], so ac-
tually we are looking at the weak error:

E[ϕ(XT )] − E[ϕ(X̄n
T )]

where X̄n
T is the final value of a discrete scheme.

We can show e.g. if ϕ is 1-Lipschitz,∣∣E[ϕ(XT )] − E[ϕ(X̄n
T )]
∣∣ ≤ E

[∣∣ϕ(XT )− ϕ(X̄n
T )
∣∣]

≤ E
[∣∣XT − X̄n

T

∣∣]

and E
[∣∣XT − X̄n

T

∣∣] is in O( 1√
n

) if Euler and O( 1
n ) if Mil-

stein. But this last majoration is too strong, we thinner
majoration.

Theorem 5.6. (a) Assume b and σ are 5 times continuously
differentiable on Rd with bounded existing partial deriva-
tives (this implies that b and σ are Lipschitz). Assume
f : Rd → R is 5 times differentiable with polynomial growth
as well as its existing partial derivatives. Then, for every
x ∈ Rd,

E
[
f(X̄n

T )
]

= E [f(XT )] + O

(
1

n

)
as n→∞.

(b) If b, σ ∈ CR+5
b and f ∈ CR+5

pol , R ≥ 1, then

E
[
f(X̄n

T )
]

= E [f(XT )] +

R∑
r=1

crn
−r + O

(
n−(R+1)

)
as n→∞.

(c) If b, σ ∈ C∞b , f bounded and σ uniformly elliptic (i.e.
σσ∗(x) ≥ ξId), then we have the result of (b) for any R ≥ 1.

Remark. The part (b) has a great interest, indeed let

E
[
f(X̄n

T )
]

= E [f(XT )] +
c1
n

+
c2
n2

+ O

(
1

n3

)
;

E
[
f(X̄2n

T )
]

= E [f(XT )] +
c1
2n

+
c2

4n2
+ O

(
1

n3

)
.

Hence

2E
[
f(X̄2n

T )
]
− E

[
f(X̄n

T )
]

= E [f(XT )]− c2
2n2

+ O

(
1

n3

)
.

5.5 Richardson–Romberg extrapolation
with consistent increments

To take advantage of the expansion, we will perform a
Richardson-Romberg extrapolation. We introduce two Eu-
ler schemes, X̄(1) and X̄(2) with interval Tn and T

2n , associ-
ated to W (1) and W (2). Hence

E
[
f(X̄

(1)
T )
]

= E [f(XT )] +
c1
n

+
c2
n2

+ O

(
1

n3

)
;

E
[
f(X̄

(2)
T )
]

= E [f(XT )] +
c1
2n

+
c2

4n2
+ O

(
1

(2n)3

)
so by combining them,

2E
[
f(X̄

(2)
T )
]
− E

[
f(X̄

(1)
T )
]

= E [f(XT )] − c1
2n

+ O

(
1

n3

)
.

So the natural estimator is

ÎM :=
1

M

M∑
k=1

(
2f
(

(X̄
(2)
T )k

)
− f

(
(X̄

(1)
T )k

))
,
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and the quadratic error associated is∥∥∥E [f(XT )]− ÎM
∥∥∥2

2
, Var

[
ÎM

]
+ E

[
E [f(XT )]− ÎM

]2
=

Var
[
2f(X̄

(2)
T )− f(X̄

(1)
T )
]

M

+
( c2
n2

)2

+ O(n−5).

A lazy choice would lead in W (1) ⊥⊥W (2) and then

Var
[
2f(X̄

(2)
T )− f(X̄

(1)
T )
]

= 5Var [f(XT )] ,

which is a bad idea because we have a much greater L2 error
than without the extrapolation.

The best choice is to take W (1) = W (2), hence the pre-
vious variance is equal to Var [f(XT )].

5.6 Link between PDE and simulation:
Feynmann-Kac’s formula

We have, with d = q = 1 the following SDE

dXt = b(t,Xt) dt + σ(t,Xt) dWt.

Let u ∈ C1,2([0, T ],R), and with ∂u
∂x satisfies polynomial

growth, solution of

∂u

∂t
+ Lu = 0 , u(T, ·) = f (5.6)

where the operator L is defined by

Lg(t, x) = b(t, x)∂xg(t, x) +
1

2
σ2(t, x)∂2

xg(t, x).

With Itô’s Lemma we have

f(Xx
T ) = u(T,Xx

T )

= u(0, x) +

∫ T

0

(
∂u

∂t
+ Lu

)
︸ ︷︷ ︸

= 0

(s,Xx
s ) ds

+

∫ T

0

σ(s,Xx
s )
∂u

∂x
(s,Xx

s ) dWs.

And as the third member is a martingale we have the direct
link with the expectation:

E[F (Xx
T )] = u(0, x).

6 Back to sensitivity computation
Let Z : (Ω,Z,P)→ (E, E) be a r.v., and with I a nonempty
open space of R, define F : I × E → R. Then set

f(x) = E [F (x, Z)] .

Assume that the function f is regular, at least at some
points. Our aim is to devise a method to compute by simu-
lation f ′(x) at such points. If,

• the functional F (x, z) is differentiable at x,

• if a domination or uniform integrability property
holds,

• the partial derivative ∂F
∂x (x, z) can be computed at a

reasonable cost,

• and Z is a simulatable random vector (still at a rea-
sonable cost)

then it is natural to compute f ′(x) using a Monte Carlo
simulation based on the representation formula

f ′(x) = E
[
∂F

∂x
(x, Z)

]
.

6.1 Finite difference method

6.1.1 The constant step approach

We will distinguish two cases: in the first one – called “regu-
lar setting” – the function x 7→ F (x, Z(ω)) is “not far” from
being pathwise differentiable whereas in the second one –
called “singular setting” – f remains smooth but F becomes
“singular”.

The regular setting

Proposition 6.1. Let x ∈ R. Assume that F satisfies the
following local mean quadratic Lipschitz continuous assump-
tion (“at x”), ∃ε0 > 0, ∀x′ ∈ (x− ε0, x+ ε0),

|F (x, Z)− F (x′, Z)|2 ≤ CF,Z |x− x′|.

Assume the function f is twice differentiable with a Lips-
chitz continuous second derivative on ]x − ε0, x + ε0[. Let
(Zk)k≥1 be a sequence of i.i.d. random vectors with the same
distribution as Z, then for every ε ∈]0, ε0[,∥∥∥∥∥f ′(x) − 1

M

M∑
k=1

F (x+ ε, Zk) + F (x− ε, Zk)

2ε

∥∥∥∥∥
2

≤ [f ′′]lip
ε2

2
+

CF,Z√
M

.

Remark. In the above sum [f ′′]lip
ε2

2 represents the bias and
CF,Z√
M

is the statistical error.

From a practical point of view this means that, in order
to reduce the error by a factor 2, we need to reduce ε and
increase M as follows:

ε  
ε√
2

M  4M.
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The singular setting

Proposition 6.2. Let x ∈ R. Assume that F satisfies in a
neighbourhood ]xε0, x + ε0[, ε0 > 0, of x the following local
mean quadratic θ-Hölder assumption (θ ∈]0, 1]) assumption
(“at x”) i.e. there exists a positive real constant CHol,F,Z ,
∀x′, x′′ ∈]xε0, x+ ε0[,

‖F (x′, Z)− F (x′′, Z)‖ ≤ CHol,F,Z |x′ − x′′|θ.

Assume the function f is twice differentiable with a Lips-
chitz continuous second derivative on ]x − ε0, x + ε0[. Let
(Zk)k≥1 be a sequence of i.i.d. random vectors with the same
distribution as Z, then for every ε ∈]0, ε0[,∥∥∥∥∥f ′(x) − 1

M

M∑
k=1

F (x+ ε, Zk) + F (x− ε, Zk)

2ε

∥∥∥∥∥
2

≤ [f ′′]lip
ε2

2
+

CHol,F,Z

(2ε)1−θ
√
M
.

6.1.2 A recursive approach: finite difference with
decreasing step

Let (εk)k≥1 be a sequence of positive real numbers decreas-
ing to 0. With the notations and the assumptions of the
former section, consider the estimator

f̂ ′(x)M :=
1

M

M∑
k=1

F (x+ εk, Zk) + F (x− εk, Zk)

2εk

Remark. It can be computed recursively.
We can easily show that

∥∥∥f ′(x)− f̂ ′(x)M

∥∥∥
2
≤ 1√

M

√√√√ [f ′′]2lip
4M

(
M∑
k=1

ε2
k

)2

+ C2
F,Z .

In order to prove a 1√
M

rate (like in a standard Monte
CarloM simulation) we need the sequence (εm)m≥1 and the
size M to satisfy (

M∑
k=1

ε2
k

)2

= O(M) ,

this leads to choose εk of the form εk = O
(
k−

1
4

)
as k →∞.

6.2 Pathwise differentiation method
Theorem 6.3 (Kusuoka).

Example 6.1. If d = q = 1, the above SDE reads

dYt(x) = Yt(x) (b′x(t,Xt) dt + σ′x(t,Xx
t ) dWt) ;

Y0(x) = 1.

and elementary computations show that

Yt(x) = exp

(∫ t

0

(
b′x(t,Xx

s )− 1

2
σ′x(s,Xx

s )2

)
ds

+

∫ t

0

σ′x(s,Xx
s ) dWs

)
.

6.3 Sensitivity computation for non
smooth payoffs
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