EXERCICES

Feuille #3. Martingales

Antoine FALCK

12 novembre 2017

- * Exercice 1. 1. Soit (M_t) une martingale continue et positive, telle que $M_t \xrightarrow[t \to \infty]{} 0$ p.s. Montrer que pour tout x > 0, $\mathbb{P}\left\{\sup_{t \ge 0} M_t \ge x | \mathcal{F}_0\right\} = 1 \wedge \frac{M_0}{x}$ p.s.
 - 2. Soit B un mouvement brownien. Donner la loi de $\sup_{t>0} (B_t t)$.

Démonstration. 1. On pose $T:=\inf\{t\geq 0,\ M_t\geq x\}$. Et $(M_{T\wedge t},\ t\geq 0)$ est une martingale UI et par le théorème d'arrêt :

$$\mathbb{E}[M_{T \wedge t} | \mathcal{F}_0] = M_0,$$

et donc $\mathbb{E}[M_T|\mathcal{F}_0] = M_0$. On a,

$$M_T := M_T \mathbb{1}_{\{T < \infty\}} + \underbrace{M_T \mathbb{1}_{\{T = \infty\}}}_{= 0}$$

= $(M_0 \lor x) \mathbb{1}_{\{T < \infty\}}.$

Et donc,

$$M_{0} = \mathbb{E}\left[(M_{0} \vee x)\mathbb{1}_{\{T<\infty\}}|\mathcal{F}_{0}\right]$$

$$\Leftrightarrow \frac{M_{0}}{M_{0} \vee x} = \mathbb{E}\left[\mathbb{1}_{\{T<\infty\}}|\mathcal{F}_{0}\right]$$

$$\Leftrightarrow 1 \wedge \frac{M_{0}}{x} = \mathbb{P}\left\{\sup_{t\geq 0} M_{t} \geq x|\mathcal{F}_{0}\right\}.$$

2. On sait que $\left(e^{\theta B_t - \frac{\theta^2}{2}t}, t \ge 0\right)$, $\theta \in \mathbb{R}$, est une martingale. On peut donc prendre $\theta = 2$.

$$\mathbb{P}\{\sup_{t} e^{2(B_{t}-t)} \geq x | \mathcal{F}_{0}\} = 1 \wedge \frac{1}{x}$$

$$\Leftrightarrow \mathbb{P}\{\sup_{t} B_{t} - t \geq x | \mathcal{F}_{0}\} = 1 \wedge e^{-2x}$$

$$\Leftrightarrow \mathbb{P}\{\sup_{t} B_{t} - t \leq x | \mathcal{F}_{0}\} = \mathbb{1}_{\{x \geq 0\}} (1 - e^{-2x}).$$

Donc $(B_t - t) \sim \mathcal{E}(2)$.