Fiche Introduction to diffusion process

Antoine Falck

December 12, 2017

Contents

1 Introduction

This introduction deliberately is incomplete from a mathematical point of vue. Its aim is just to introduce some notions on stochastic calculus without being rigorous at all.

1.1 Brownian motion

Let us consider a set of r.v. in \mathbb{R}, X_t is the value at time t. Between the times t and $t + h$ with $h > 0$,

$$
\begin{array}{rcl}\n\Delta X_t^h & := & X_{t+h} - X_t \\
& = & H_t \varepsilon_t^h.\n\end{array} \tag{1.1}
$$

This is the fundamental hypothesis, when h is small ΔX_t^h is the product of H_t which is a continuous function observable at time t, and ε_t^h r.v. independent from all that happen until t and s.t. its law only depends on h .

Remark. This assumption is quite natural if X_t is deterministic then with H_t is its derivative and $\varepsilon_t^h = h$; and you find the Taylor expansion.

Let's take $h = h_1 + h_2$ with $h_1, h_2 > 0$, then

$$
X_{t+h} = X_{t+h_1} + H_{t+h_1} \varepsilon_{t+h_1}^{h_2} \tag{1.3}
$$

$$
= X_t + \underbrace{H_t \varepsilon_t^{h_1} + H_{t+h_1} \varepsilon_{t+h_1}^{h_2}}_{H_t \varepsilon_t^h}.
$$
 (1.4)

And with $h_1 < h$ very small by continuity we have $H_{t+h_1} \approx$ H_t , so we deduce

$$
\varepsilon_t^h \quad \approx \quad \varepsilon_t^{h_1} \ + \ \varepsilon_{t+h_1}^{h_2}.\tag{1.5}
$$

By iterating,

⇔

$$
\varepsilon_t^h \approx \varepsilon_t^{\frac{h}{n}} + \varepsilon_{t+\frac{h}{n}}^{\frac{h}{n}} + \cdots + \varepsilon_{t+\frac{(n-1)h}{n}}^{\frac{h}{n}}, \qquad (1.6)
$$

so ε_t^h is the sum of n r.v. of same law, by the central limit ε_t^h follows a normal law. We note m_h its mean and σ_h^2 its variance. With (1.5) we deduce

$$
\begin{cases}\n m_{h_1+h_2} = m_{h_1} + m_{h_2} \\
 \sigma_{h_1+h_2}^2 = \sigma_{h_1}^2 + \sigma_{h_2}^2\n \end{cases}
$$
\n
$$
\begin{cases}\n m_h = bh \\
 \sigma_h^2 = \sigma^2 h, \quad b \in \mathbb{R}, \ \sigma \ge 0\n \end{cases}
$$
\n(1.3)

$$
\Leftrightarrow \qquad \varepsilon_t^h \ = \ bh \ + \ \sigma(B_{t+h} - B_t). \tag{1.9}
$$

where $(B_t, t \geq 0)$ is a brownian motion.

Definition 1.1 (Brownian motion). Continuous set of r.v. where each r.v. is gaussian, s.t. $B_t \sim \mathcal{N}(0, t)$ and $B_{t+h} - B_t$ is independent from $(B_s, s \in [0, t])$.

We then have with this definition,

$$
X_{t+h} = X_t + H_t(bh + \sigma(B_{t+h} - B_t)). \quad (1.10)
$$

If $\sigma = 0$, we simply have the differential equation $\frac{dX_t}{dt} = bH_t$, i.e.

$$
X_t = X_0 + \int_0^t bH_s \, \mathrm{d}s. \tag{1.11}
$$

Else if $\sigma > 0$,

$$
X_t = X_0 + \int_0^t bH_s \, ds + \underbrace{\int_0^t \sigma H_s \, dB_s}_{\text{stochastic integral}} \quad (1.12)
$$

1.2 Stochastic integral

Here $(H_t, t \geq 0)$ is a continuous process, we also assume that for all t , H_t is observable. And it is very important that $(B_{t+h} - B_t, h > 0)$ and $(H_s, B_s, s \in [0, t])$ are independent.

We now want to give a sense to the stochastic integral $\int_0^t H_s \, dB_s$. Let us begin with the simple case where the function $t \mapsto H_t$ is a floor function, *i.e.*

$$
H_t \quad := \quad \sum_{i=1}^n H_{t_i} \mathbb{1}_{[t_i, t_{i+1}[}(t).
$$

We then define its stochastic integral,

$$
\int_0^t H_s \, \mathrm{d}B_s \; \triangleq \; \sum_{i=1}^n H_{t_i} (B_{t_{i+1} \wedge t} - B_{t_i \wedge t}). \quad (1.13)
$$

Lemma 1.1. Let ξ_i and η_i , $i \in [1, n]$, square integrable r.v. s.t. for all i, $\mathbb{E}[\eta_i] = 0$ and η_i is independent from $(\xi_i, \eta_k, j \in [\![1, i]\!], k \in [\![1, i]\!]).$ Then,

(i)
$$
\mathbb{E}\left[\sum_{i=1}^{n} \xi_i \eta_i\right] = 0
$$
;
(ii) $\mathbb{E}\left[\left(\sum_{i=1}^{n} \xi_i \eta_i\right)^2\right] = \sum_{i=1}^{n} \mathbb{E}[\xi_i^2] \mathbb{E}[\eta_i^2].$

Proof. For (i).

$$
\mathbb{E}\left[\sum_{i=1}^{n}\xi_{i}\eta_{i}\right] = \sum_{i=1}^{n}\mathbb{E}\left[\xi_{i}\eta_{i}\right], \text{ (linearity)}
$$

$$
= \sum_{i=1}^{n}\mathbb{E}[\xi_{i}]\underbrace{\mathbb{E}[\eta_{i}]}_{=0}, \xi_{i} \perp \hspace{-.07cm}\perp \eta_{i}
$$

For (ii).

$$
\mathbb{E}\left[\left(\sum_{i=1}^n \xi_i \eta_i\right)^2\right] = \mathbb{E}\left[\sum_{i=1}^n (\xi_i \eta_i)^2 + 2 \sum_{1 \leq i < j \leq n} \xi_i \xi_j \eta_i \eta_j\right]
$$
\n
$$
= \sum_{i=1}^n \mathbb{E}[\xi_i^2] \mathbb{E}[\eta_i^2]
$$
\n
$$
+ 2 \sum_{1 \leq i < j \leq n} \mathbb{E}[\xi_i \xi_j \eta_i] \underbrace{\mathbb{E}[\eta_j]}_{=0}.
$$

 \Box

Lemma 1.2. Let $(H_t, t \geq 0)$ be a constant piecewise process. If $\mathbb{E}[H_s^2] < \infty$, then for all $t \geq 0$,

$$
(i) \mathbb{E}\left[\int_0^t H_s \, \mathrm{d}B_s\right] = 0 ;
$$

$$
(ii) \mathbb{E}\left[\left(\int_0^t H_s \, \mathrm{d}B_s\right)^2\right] = \mathbb{E}\left[\int_0^t H_s^2 \, \mathrm{d}s\right].
$$

Proof. Write the integral with the definition (1.13) then take $\xi_i := H_{t_i}$ and $\eta_i := B_{t_{i+1} \wedge t} - B_{t_i \wedge t}$ from Lemma 1.1. \Box

We can then extend the stochastic integral to other process as each process can be written as the limit of constant piecewise processes.

1.3 Girsanov theorem

Proposition 1.3. Let $r > 0$ and $f \in L^2([0, r], ds)$, then for all t ∈ [0, r], $\int_0^t f(s) \, dBs \sim \mathcal{N}\left(0, \int_0^t f^2(s) \, ds\right)$.

Proof. $\exists (f_n), f_n := \sum_{i=0}^{p_n-1} \alpha_i^n 1\!\!1_{[t_{i+1}^n, t_i^n]}$ and $f_n \to f$ in $L^2([0, r], ds)$. We saw that $\int_0^t f_n(s) \, dB_s \to \int_0^t f(s) \, dB_s$ in $L^2(\Omega)$. And $\int_0^t f_n(s) \, dB_s = \sum_{i=1}^{p_n} \alpha_i^n (B_{t_{i+1}^n \wedge t} - B_{t_i^n \wedge t})$ follows the normal law $\mathcal{N}\left(0, \int_0^t f_n(s)^2 ds\right)$. \Box

Let us note

$$
Z := \exp\left(\int_0^r f(s) \, \mathrm{d}B_s - \frac{1}{2} \int_0^r f(s)^2 \, \mathrm{d}s\right).
$$

And let us define the probability $\mathbb Q$ on $(\Omega, \mathcal F)$ by,

$$
\mathbb{Q} = \mathbb{E}[Z \mathbb{1}_A] = \int_{\Omega} \mathbb{1}_A Z \, d\mathbb{P} \;, \quad A \in \mathcal{F}.
$$

Then for all r.v. X ,

$$
\mathbb{E}_{\mathbb{Q}}[X] = \int_{\Omega} X \, \mathrm{d}\mathbb{Q} = \int_{\Omega} XZ \, \mathrm{d}\mathbb{P} = \mathbb{E}[XZ].
$$

Theorem 1.4 (Girsanov's theorem). The process defined by

$$
\widetilde{B}_t \quad := \quad B_t \ - \ \int_0^t f(s) \, \mathrm{d}s,
$$

is a brownian motion on Q.

1.4 Itô's formula

Theorem 1.5. Let $t > 0$ and $0 =: t_0^n < \cdots <$ $t_{p_n}^n$:= t a set of subdivisions of $[0,t]$ where the interval $\lim_{n \to \infty} \max_{0 \le i \le p_n - 1} (t_{i+1}^n - t_i^n) = 0$. Then,

$$
\sum_{i=0}^{p_n-1} \left(B_{t_{i+1}^n} - B_{t_i^n} \right)^2 \xrightarrow[n \to \infty]{L^2} t
$$

Proof. We just have to see that for all $f : \mathbb{R} \to \mathbb{R}$ bounded measurable function,

$$
\Sigma_n := \sum_{i=0}^{p_n - 1} f(B_{t_i}^n) \left(\left(B_{t_{i+1}^n} - B_{t_i^n} \right)^2 - \left(t_{i+1}^n - t_i^n \right) \right) \xrightarrow{L^2} 0
$$

We will use the Lemma 1.1 with $\xi_i := f(B_{t_i^n})$ and $\eta_i :=$ $(B_{t_{i+1}^n} - B_{t_i^n})^2 - (t_{i+1}^n - t_i^n).$

$$
\mathbb{E}\left[\Sigma_n^2\right] = \sum_{i=0}^{p_n-1} \mathbb{E}\left[f^2(B_{t_i^n})\right] \mathbb{E}\left[\eta_i^2\right]
$$

,

and η_i has the same law as $(t_{i+1}^n - t_i^n)(B_1^2 - 1)$ and $\mathbb{E}[(B_1^2 - 1)^2] = 2$ as $(B_1^2 - 1) \sim \chi^2(1)$. We then note $c := \sup_{x \in \mathbb{R}} 2f^2(x) < \infty,$

$$
\mathbb{E} \left[\Sigma_n^2 \right] \leq c \sum_{i=0}^{p_n - 1} \left(t_{i+1}^n - t_i^n \right)^2
$$
\n
$$
\leq c \max_{0 \leq k \leq p_n - 1} \left(t_{k+1}^n - t_k^n \right) \sum_{i=0}^{p_n - 1} \left(t_{i+1}^n - t_i^n \right)
$$
\n
$$
\leq c \sum_{0 \leq k \leq p_n - 1} \left(t_{k+1}^n - t_k^n \right) \xrightarrow[n \to \infty]{} 0
$$

Theorem 1.6 (Itô's formula). If $f : \mathbb{R} \to \mathbb{R}$ is in \mathcal{C}^2 then,

$$
f(B_t) = f(B_0) + \int_0^t f'(B_s) \, \mathrm{d}B_s + \frac{1}{2} \int_0^t f''(B_s) \, \mathrm{d}s.
$$

Theorem 1.7 (Itô's formula). If $f : \mathbb{R}_+ \times \mathbb{R} \to \mathbb{R}$ is in $\mathcal{C}^{1,2}$ then,

$$
f(t, B_t) = f(0, B_0) + \int_0^t \frac{\partial f}{\partial t}(s, B_s) ds
$$

+
$$
\int_0^t \frac{\partial f}{\partial x}(s, B_s) dB_s + \frac{1}{2} \int_0^t \frac{\partial^2 f}{\partial x^2}(s, B_s) ds.
$$

2 Brownian motion

2.1 Definition and first properties

We work in the probability space $(\Omega, \mathcal{F}, \mathbb{P})$ that is complete, *i.e.* that $\mathcal F$ contains all the P-negligible sets. We call random processes all sets of random variables.

Definition 2.1 (Brownian motion). $(B_t, t \geq 0)$ is a Brownian motion (real and null in 0) if:

- (i) $t \mapsto B_t$ (the path) is a.s. continuous on \mathbb{R}_+ .
- (ii) $B_0 = 0$ a.s.
- (iii) ∀n ≥ 2, ∀0 ≤ t_1 ≤ \cdots ≤ t_n , B_{t_n} $B_{t_{n-1}}, \ldots, B_{t_2}$ B_{t_1}, B_{t_1} are independant.
- (iv) $\forall t \geq s \geq 0, B_t B_s \sim \mathcal{N}(0, t s).$

Remark. The Brownian motion is a process with independent increase (iii) and stationary (iv), *i.e.* it is a Levy process.

Definition 2.2 (Gaussian process). $(X_t, t \in \mathbf{T})$ is a Gaussian process if for all $n \geq 1$ and for all $(t_1, \ldots, t_n) \in \mathbf{T}^n$, (X_{t_n},\ldots,X_{t_n}) is a Gaussian vector.

Proposition 2.1. $(X_t, t \geq 0)$ is a brownian motion iff a.s. $t \mapsto X_t$ is continuous on \mathbb{R}_+ and $(x_t, t \geq 0)$ is a centred gaussian process of covariance $Cov(X_t, X_s) = t \wedge s, \forall s, t \geq 0$.

Proof. "⇒". For all $0 \leq t_1 \leq \cdots \leq t_n$, X_{t_n} – $X_{t_{n-1}}, \ldots, X_{t_2} - X_{t_1}, X_{t_1}$ are Gaussian and independant r.v. so $(X_{t_n} - X_{t_{n-1}}, \ldots, X_{t_2} - X_{t_1}, X_{t_1})$ is a Gaussian vector, so (X_1, \ldots, X_n) is a centred Gaussian vector. For all $t \geq s \geq 0$,

$$
Cov(X_t, X_s) \triangleq \mathbb{E}[X_t X_s] - \underbrace{\mathbb{E}[X_t] \mathbb{E}[X_s]}_{=0}
$$

$$
= \underbrace{\mathbb{E}[(X_t - X_s)] \mathbb{E}[X_s]}_{=0} + \mathbb{E}[X_s^2]
$$

$$
= \mathbb{E}[(X_s - X_0)^2] = Var[X_s - X_0] = s - 0.
$$

" \Leftarrow ". (ii). $\text{Var}[X_0] = \mathbb{E}[X_0^2] = 0$ and $\mathbb{E}[X_0] = 0$. (iii). $\forall 0 \le t_1 \le \cdots \le t_n$, $(X_{t_1}, \ldots, X_{t_n})$ is a gaussian vector, so $(X_{t_1}, X_{t_2} - X_{t_1}, \ldots, X_{t_n} - X_{t_{n-1}})$ is also a Gaussian vector. To show the independence we just have to show that the covariance is null. For all $1 \leq i \leq j \leq n$,

$$
C := \text{Cov}(X_{t_i} - X_{t_{i-1}}, X_{t_j} - X_{t_{j-1}})
$$

=
$$
\text{Cov}(X_{t_i} - X_{t_j}) - \text{Cov}(X_{t_{i-1}} - X_{t_j})
$$

-
$$
\text{Cov}(X_{t_i} - X_{t_{j-1}} + \text{Cov}(X_{t_{i-1}} - X_{t_{j-1}}))
$$

=
$$
t_i - t_{i-1} - t_i + t_{i-1} = 0.
$$

(iv). For all $t \geq s \geq 0$, $X_t - X_s$ is a centred Gaussian r.v. and,

$$
Var[X_t - X_s] = Var[X_t] + Var[X_s] - 2Cov[X_t, X_s]
$$

= $t + s - 2s = t - s$.

Theorem 2.2 (Wiener). The brownian motion exists.

Proof.

Proposition 2.3. If B_t is a Brownian motion, then the following processes are also:

(i) $X_t = -B_t$. (*ii*) $X_t = \frac{1}{t} B_{\frac{1}{t}}$. (*iii*) $a > 0, X_t = \frac{1}{\sqrt{a}} B_{at}.$ (iv) $s \geq 0$, $X_t = B_{t+s} - B_s$. (v) $r > 0$, $X_t = B_r - B_{r-t}$, avec $t \in [0, r]$.

Example 2.1 (Brownian bridge). Let B be a Brownian motion, we define $b_t := B_t - tB_t$ with $t \in [0,1]$. This is a centred Gaussian process with covariance $s \wedge t - st$.

- $(b_t, t \in [0,1]) \perp B_1$.
- If $(b_t, t \in [0, 1])$ is a Brownian bridge then $(b_{1-t}, t \in$ $[0, 1]$ also.
- If $(b_t, t \in [0,1])$ is a Brownian bridge then $B_t :=$ $(1+t)b_{\frac{t}{1+t}}$ is a Brownian motion.

Note that $b_t = (1-t)B_{\frac{t}{1-t}}$.

Example 2.2. We have $\lim_{t \to 0} B_t = 0$, a.s. By inverting time,

$$
\lim_{t \to \infty} \frac{B_t}{t} = 0.
$$

Theorem 2.4 (Lévy). Let $t > 0$ and $0 =: t_0^n < \cdots <$ $t_{p_n}^n$:= t a set of subdivisions of $[0,t]$ where the interval $\max_{0 \leq i \leq p_n-1} (t_{i+1}^n - t_i^n) \xrightarrow[n \to \infty]{} 0.$ Then,

$$
\sum_{i=0}^{p_n-1}\left(B_{t_{i+1}^n}-B_{t_i^n}\right)^2\xrightarrow[n\to\infty]{L^2}t.
$$

See the proof after Theorem 1.5.

2.2 Markov property

We denote by $(\Omega, \mathcal{F}, \mathbb{P})$ a complete probability space. Define $(\mathcal{F}_t, t \geq 0)$ a filtration, *i.e.* a growing set of sub-tributes from F. For all $0 \leq s \leq t$:

$$
\mathcal{F}_0\subset \mathcal{F}_s\subset \mathcal{F}_t\subset \mathcal{F}.
$$

Example 2.3. Let $(X_t, t \geq 0)$ be a stochastic process and define for all $t \geq 0$,

$$
\mathcal{F}_t \quad := \quad \sigma(X_s, s \in [0, t]).
$$

Then (\mathcal{F}_t) is a filtration, and it is called the canonical filtration of the process X .

We say that $(B_t, t \geq 0)$ is a (\mathcal{F}_t) -Brownian motion if:

- (i) $\forall t \geq 0$, B_t is \mathcal{F}_t -measurable (adapted);
- (ii) $\forall s \geq 0$, $(B_{t+s} B_s, t \geq 0)$ is a Brownian motion independent from \mathcal{F}_s .

Theorem 2.5 (Simple Markov property). We note B a Brownian motion and (\mathcal{F}_t) its associated canonical filtration, then B is a (\mathcal{F}_t) -Brownian motion.

In other words, for all $s \geq 0$, $(B_{t-s} - B_s, t \geq 0) \perp \perp$ $\sigma(B_u, u \in [0, s]).$

Proof. We just have to show the independence, i.e. that the vectors $(B_{t_1+s}-B_s, \ldots, B_{t_n+s}-B_s), (B_{s_1}, \ldots, B_{s_n})$ are independent for all $0 \le t_1 < \cdots < t_n, 0 \le s_1 < \cdots < s_n \le s$.

We have $Cov(B_{t_i+s} - B_s, B_{s_j}) = Cov(B_{t_i+s}, B_{s_j}) Cov(B_s, B_{s_j}) = s_j - s_j = 0.$ And $(B_{t_1+s} - B_s, \ldots, B_{t_n+s} B_s, B_{s_1}, \ldots, B_{s_n}$ is a gaussian vector, so the two previous vectors are independent. \Box

 \Box

 \Box

Let (\mathcal{F}_t) be a filtration. For all $t \geq 0$ we note

$$
\mathcal{F}_{t+} \quad := \quad \bigcap_{u>t} \mathcal{F}_u.
$$

It is clear that it is also a filtration.

Theorem 2.6 (The 0–1 law of Blumenthal). Let B be a Brownian motion and (\mathcal{F}_t) its associated canonical filtration. Then for all $A \in \mathcal{F}_{0+}$, $\mathbb{P}(A) = 0$ or 1.

Proof. Let us first show that B is a (\mathcal{F}_{t+}) -Brownian motion. As previously we just have to show the independence (the other points are clear). So we have to show that, for $A \in \mathcal{F}_{s+}$, $0 \leq t_1 < \cdots < t_n$ and $F: \mathbb{R}^n \to \mathbb{R}$ bounded and continuous:

$$
\mathbb{E}[\mathbb{1}_A F(B_{t_1+s} - B_s, \dots, B_{t_n+s} - B_s)] = \qquad (2.1)
$$

$$
\mathbb{P}(A) E[\mathbb{1}_A F(B_{t_1+s}, \dots, B_{t_n+s})].
$$

Let $\varepsilon > 0$, the process $t \mapsto B_{t+s+\varepsilon} - B_{s+\varepsilon}$ is independent from $\mathcal{F}_{s+\varepsilon}$ and a fortiori \mathcal{F}_{s+} . So,

$$
\mathbb{E}[\mathbb{1}_A F(B_{t_1+s+\varepsilon}-B_{s+\varepsilon},\ldots,B_{t_n+s+\varepsilon}-B_{s+\varepsilon})] =
$$

$$
\mathbb{P}(A)E[\mathbb{1}_A F(B_{t_1+s+\varepsilon},\ldots,B_{t_n+s+\varepsilon})].
$$

By $\varepsilon \to 0$, an argument of continuity and the dominated convergence theorem we obtain (2.1).

So we have that \mathcal{F}_{0+} is independent from $\sigma(B_t, t \geq 0)$. If $A \in \mathcal{F}_{0+} = \bigcap_{u>0} \mathcal{F}_u \subset \sigma(B_t, t \geq 0)$, then $A \perp \perp A$ and $\mathbb{P}{A} = \mathbb{P}{A}^2$.

Example 2.4. Let $\tau := \inf\{t > 0 : B_t > 0\}$, then $\tau = 0$ a.s. Indeed,

$$
\{\tau = 0\} = \bigcap_{\substack{t \in]0,\varepsilon]} \substack{s \in [0,t] \\ t \in \mathbb{Q}} \sum_{s \in \mathbb{Q}} B_s > 0\}, \quad \forall \varepsilon > 0
$$

So $\{\tau = 0\} = \bigcap_{\varepsilon > 0} \mathcal{F}_{\varepsilon} = \mathcal{F}_{0+}$, we now know that $\mathbb{P}\{\tau =$ $0\} = 0$ or 1. For all $t \geq 0$, $\mathbb{P}\{\tau \leq t\} \geq \mathbb{P}\{B_t > 0\} = \frac{1}{2}$ and $\mathbb{P}\{\tau \leq t\} = \lim_{\varepsilon \to 0} \downarrow \mathbb{P}\{\tau \leq t\} \geq \frac{1}{2}$, then $\tau = 0$ a.s.

By time inversion we also see that $\{t > 0 : B_t = 0\}$ is non bounded a.s.

Let (\mathcal{F}_t) be a filtration, we define

$$
\mathcal{F}_{\infty} \quad := \quad \sigma(\mathcal{F}_t, t \geq 0) \ ,
$$

the tiniest tribe that contains all the elements of the tribes \mathcal{F}_t .

Definition 2.3 (Stopping time). The application $T : \Omega \to$ $\mathbb{R}_+ \cup \{\infty\}$ is a stopping time if for all $t \geq 0$, $\{T \leq t\} \in \mathcal{F}_t$.

Example 2.5. The constant $T = t$ is a stopping time. And $T_a := \inf\{t > 0 : B_t = a\}$ is also a stopping time, indeed ${T_a \le t} = {\sup_{0 \le s \le t} B_s = a} \in \mathcal{F}_t.$

Definition 2.4. Let T be a stopping time. The tribe of previous events to T is

> \mathcal{F}_T := { $A \in \mathcal{F}_{\infty}$: $\forall t \geq 0, \cap \{T \leq t\} \in \mathcal{F}_t$ }. So $T_a \sim \frac{a^2}{B^2}$

Theorem 2.7 (Strong Markov property). We note B a Brownian motion and (\mathcal{F}_t) its associated canonical filtration. Let T be a stopping time. Conditionaly to $\{T < \infty\},\$ the process $(B_{T+t} - B_T, t \geq 0)$ is a Brownian motion independent from (\mathcal{F}_T) .

Proof.

Theorem 2.8 (Reflexivity). Let B be a Brownian motion. With $t \geq 0$, we note $S_t := \sup_{s \in [0,t]} B_s$. Then,

$$
\mathbb{P}\{S_t \ge a, B_t \le b\} = \mathbb{P}\{B_t \ge 2a - b\}.
$$

for all $a \geq 0$, $b \leq a$. In particular for all fixed t, $S_t \sim |B_t|$.

Remark. It is just for t fixed, the equality in law between $(S_t, t \geq 0)$ and $(|B_t|, t \geq 0)$ is false.

Proof.

$$
\mathbb{P}\{S_a \ge t, B_t \le b\} = \mathbb{P}\{T_a \le t, B_t \le t\}
$$

\n
$$
= \mathbb{P}\{T_a \le t, \tilde{B}_{t-T_a} \le b-a\},
$$

\n
$$
\tilde{B}_s := B_{s+T_a} - B_{T_a}
$$

\n
$$
= \mathbb{P}\{(T_a, \tilde{B}) \in A_t\},
$$

where $A_t := \{(u, x) \in \mathbb{R}_+ \times ?, 0 \le u \le t, x(t - u) \le b - a)\}.$ We have $P_{(T_a,\tilde{B})} = P_{T_a} \otimes P_{\tilde{B}}$ as $T_a \perp \!\!\! \perp B$. And $B \sim -B$, so,

$$
\mathbb{P}\{S_a \ge t, B_t \le b\} = \mathbb{P}\{(T_a, -\tilde{B}_t) \in A_t\}
$$

\n
$$
= \mathbb{P}\{T_a \le t, -\tilde{B}_{t-T_a} \le b - a\}
$$

\n
$$
= \mathbb{P}\{\underline{T_a \le t, -(B_t - a) \le b - a\}}
$$

\n
$$
= \mathbb{P}\{B_t \ge 2a - b\}, \text{ as } 2a - b \ge a.
$$

To prove that they have the same law,

$$
\mathbb{P}\{S_a \ge a\} = \mathbb{P}\{S_a \ge a, B_t \le a\} + \mathbb{P}\{S_a \ge a, B_t > a\}
$$

= $\mathbb{P}\{B_t \ge 2a - a\} + \mathbb{P}\{\underbrace{B_t}_{=-B_t} \ge a\}$
= $\mathbb{P}\{|B_t| \ge a\}.$

 \Box

 \Box

Corollary. For all $t > 0$, the density of (S_t, B_t) is

$$
\frac{2(2a-b)}{\sqrt{2at^3}} \exp\left(-\frac{(2a-b)^2}{2t}\right) 1\!\!1_{\{a>0,b
$$

Example 2.6. Let $t > 0$ and $a > 0$,

$$
\mathbb{P}\{T_a \le t\} = \mathbb{P}\{S_t \ge a\}
$$

=
$$
\mathbb{P}\{|B_t| \ge a\}
$$

=
$$
\mathbb{P}\{|\sqrt{t}B_1| \ge a\}
$$

=
$$
\mathbb{P}\left\{t \ge \frac{a^2}{|B_1|^2}\right\}
$$

.

 $\overline{B_1^2}$ 1

2.3 Semi-group of the Brownian motion

Let $s \geq 0$ and $f : \mathbb{R} \to \mathbb{R}_+$ measurable, we can write

$$
\mathbb{E}[f(B_{t+s})|\mathcal{F}_s] = \mathbb{E}[f(B_{t+s} - B_s + B_s)|\mathcal{F}_s]
$$

= $(P_tf)(B_s)$,

 $\int_{\mathbb{R}} \frac{1}{\sqrt{2}}$ $rac{1}{2\pi t}$ exp $\left(-\frac{(x-y)^2}{2t}\right)$ $\frac{(-y)^2}{2t}$ f(y)dy.

 $(P_t, t \geq 0)$ is the semi-group of B. Indeed,

$$
P_{t+s}f(x) \triangleq \mathbb{E}[f(B_{t+s}+x)]
$$

=
$$
\mathbb{E}[\mathbb{E}[f(B_{t+s}+x)|\mathcal{F}_t]]
$$

=
$$
\mathbb{E}[(P_s f)(B_t + x)]
$$

=
$$
P_t(P_s f)(x).
$$

Proposition 2.9 (Feller property). Let $f \in \mathcal{C}_0$ (continuous s.t. $\lim_{|x| \to \infty} f(x) = 0$, then $P_t f \in C_0$ and $\lim_{t \downarrow 0} P_t f = f$ uniform on R.

Proposition 2.10 (Infinitesimal generator). If $f \in C_c^2$ (class \mathcal{C}^2 on a compact space), then $\lim_{x\downarrow 0} \frac{P_t f(x) - f(x)}{t}$ $\frac{1}{2}f''(x)$.

There is a strong link with the heat equation. Let $u(t, x) := P_t f(x)$. On a $u(0, x) = f(x)$. If f is measurable and bounded then,

$$
\frac{\partial u}{\partial t} = \frac{1}{2} \frac{\partial^2 u}{\partial x^2}.
$$

3 Continuous-time martingale

3.1 Progressive processes

Let $(\Omega, \mathcal{F}, (\mathcal{F}_t), \mathbb{P})$ be a filtered (probability) space. We define

$$
\mathcal{F}_{t+} = \bigcap_{u>y} \mathcal{F}_u ,
$$

for $t \geq 0$.

Definition 3.1 (Right continuity). We say that $(\mathcal{F}_t)_{t>0}$ is right continuous if $\forall t > 0, \, \mathcal{F}_{t+} = \mathcal{F}.$

Definition 3.2 (Complete). We say that $(\mathcal{F}_t)_{t>0}$ is complete if \mathcal{F}_0 contains all the P-null sets.

Proposition 3.1. We have a bunch of properties about the process $(X_t, t \geq 0)$:

- (i) it is right (respectively left) continuous if a.s. $t \mapsto X_t$ is right (respectively left) continuous.
- (ii) it is adapted if $\forall t \geq$, X_t is \mathcal{F}_t -measurable;
- (iii) it is progressive (or progressively measurable) if $\forall t \geq 0$, $(s, \omega) \mapsto X_s(\omega)$ is measurable along $\mathcal{B}([0, t]) \otimes \mathcal{F}_t$.

We have $(X_t, t \geq 0)$ progressive $\Rightarrow (X_t, t \geq 0)$ adapted. The reverse is generally false.

Proposition 3.2. If (\mathcal{F}_t) is complete and $(X_t, t \geq 0)$ a process in \mathbb{R}^d , adapted, right (or left) continuous, then $(X_t, t \geq 0)$ is progressive.

where for all $x \in \mathbb{R}$, $P_t f := \mathbb{E}[f(B_t + x)] = \text{Proof.}$ Let $(X_t, t \ge 0)$ be right continuous, so $\forall t \ge 0, \forall n \ge 1$ we set

$$
X_s^{(n)} \quad := \quad X_{\underbrace{(\lfloor \frac{n s}{t} \rfloor + 1)t}_{n} \wedge t} \;,
$$

 $\frac{1}{2}$

with $s \in [0, t]$. And $\forall s \in [0, t]$, $X_s^{(n)} \to X_s$. Now for all $A \in \mathcal{B}(\mathbb{R}^d)$, $\{(s,\omega) \in [0,t] \times \Omega : X_s^{(n)}(\omega) \in A\}$ can be written as

$$
\bigcup_{k=1}^n \left(\left[\frac{(k-1)t}{n}, \frac{kt}{n} \right[\times X_{\frac{kt}{n}}^{-1}(A) \right) \bigcup \left(\{t\} \times X_t^{-1}(A) \right).
$$

Where $X_{\frac{kt}{n}}^{-1}(A)$ is $\mathcal{F}_{\frac{kt}{n}}$ -measurable so \mathcal{F}_t -measurable. And \mathcal{F}_t is complete so \mathbb{P} -null sets make no trouble and X_s is $\mathcal{B}([0,t])\otimes\mathcal{F}_t$ -measurable as limit of $\mathcal{B}([0,t])\otimes\mathcal{F}_t$ -measurable functions. \Box

Let $A \subset \mathbb{R}_+ \times \Omega$ and $A \in \mathcal{B}(\mathbb{R}_+) \otimes \mathcal{F}$, is progressive if $(x_t(\omega) := \mathbb{1}_{\{(t,\omega)\in A, t \geq 0\}}$ is a progressive process. And

- {A progressive} is a tribe called the progressive tribe ;
- $(X_t, t \geq 0)$ is pregressive $\Leftrightarrow (t, \omega) \mapsto X_t(\omega)$ along the progressive tribe.

3.2 Stopping time

Let $(\Omega, \mathcal{F}, (\mathcal{F}_t), \mathbb{P})$ be a filtered space. We recall

$$
\mathcal{F}_{\infty} \quad := \quad \sigma(\mathcal{F}_t, t \geq 0) \ ,
$$

and that $T : \Omega \to \mathbb{R} \cup {\infty}$ is a stopping time if $\forall t \geq 0$, $\{T \leq t\} \in \mathcal{F}_t.$

Definition 3.3. If T is a stopping a time we set

$$
\mathcal{F}_T \quad := \quad \{A \in \mathcal{F}_{\infty} : A \cap \{T \leq t\} \in \mathcal{F}_t, \forall t \geq 0\}.
$$

Proposition 3.3. We have the following properties:

- (i) if $S \leq T$ stopping times $\Rightarrow \mathcal{F}_S \subset \mathcal{F}_T$;
- (ii) S, T stooping times \Rightarrow S \lor T, S \land T stopping times and $\mathcal{F}_{S \wedge T} = \mathcal{F}_S \cap \mathcal{F}_T$;
- (iii) $\{S \leq T\}, \{S < T\}, \{S = T\} \in \mathcal{F}_{S \wedge T}$;
- (iv) (\mathcal{F}_t) right continuous and T stopping time \Leftrightarrow {T < $t\} \in \mathcal{F}_t$, $\forall t > 0$;
- (v) (\mathcal{F}_t) right continuous and (T_n) set of stopping time \Rightarrow $T := \inf_{n \geq 1} T_n$ stopping time and $\mathcal{F}_T = \bigcap_{n \geq 1} \mathcal{F}_{T_n}$.

Proof. (i). $\forall A \in \mathcal{F}_S$ we have $A \in \mathcal{F}_{\infty}$ this is trivial. We just have to show that $A \cap \{T \leq t\} \in \mathcal{F}_t$ for all t. Indeed,

$$
A \cap \{T \leq t\} \in \mathcal{F}_t = \underbrace{A \cap \{S \leq t\}}_{\in \mathcal{F}_t} \cap \underbrace{\{T \leq t\}}_{\in \mathcal{F}_t}.
$$

(ii). For all t ,

$$
\{S \wedge T\} = \underbrace{\{S \leq t\}}_{\in \mathcal{F}_t} \cap \underbrace{\{T \leq t\}}_{\in \mathcal{F}_t},
$$

so $\{S \wedge T\} \in \mathcal{F}_t$ and it's a stopping time. We use the same proof for $S \vee T$.

 $\mathcal{F}_{S\wedge T} \subset \mathcal{F}_S$ and $\subset \mathcal{F}_T$ so $\mathcal{F}_{S\wedge T} \subset \mathcal{F}_S \cap \mathcal{F}_T$. Now let $A \in \mathcal{F}_S \cap \mathcal{F}_T$, and for all t,

$$
A \cap \{S \land T \leq t\} = \underbrace{(A \cap \{S \leq t\})}_{\in \mathcal{F}_t} \cup \underbrace{(A \cap \{T \leq t\})}_{\in \mathcal{F}_t} \in \mathcal{F}_t ,
$$

so $A \in \mathcal{F}_{S \wedge T}$ and $\mathcal{F}_{S \wedge T} \supset \mathcal{F}_S \cap \mathcal{F}_T$. \Box

Proposition 3.4. Let T be a stopping time, for all $n \geq 0$ set

$$
T_n \ := \ \sum_{k=0}^\infty \frac{k}{2^n} 1\!\!1_{\left\{\frac{k-1}{2^n} < T \leq \frac{k}{2^n}\right\}} \ + \ \infty 1\!\!1_{\{\infty\}} \ ,
$$

then $(T_n, n \geq 1)$ is a stopping time set that converges towards T.

Proof. For all t,

$$
\{T_n \le t\} = \{T < t\} \cap \underbrace{\{T_n \le t\}}_{\in \mathcal{F}_T} \in \mathcal{F}_t.
$$

So it's a stopping time.

Theorem 3.5. Let $(X_t, t \geq 0)$ be a progressive process in \mathbb{R}^d and T a stopping time. Then $\mathbb{1}_{\{T<\infty\}}X_T$ is \mathcal{F}_T -measurable.

If furthermore $X_t(\omega) \longrightarrow X_{\infty}(\omega) \in \mathbb{R}^d$, $\forall \omega \in \Omega$ then X_T is F_T -measurable.

3.3 Continuous time martingale

Let $(\Omega, \mathcal{F}, (\mathcal{F}_t), \mathbb{P})$ be a filtered space.

Definition 3.4 (Martingale). We call $(M_t, t \geq 0)$ a martingale (respectively submartingale, supermartingale) if

- (i) $(M_t, t > 0)$ is adapted;
- (ii) $\forall t \geq 0, \mathbb{E}[|M_t|] < \infty;$

(iii)
$$
\forall t \ge s \ge 0
$$
, $\mathbb{E}[M_t|\mathcal{F}_s] = M_s$ a.s. (respectively \ge , \le).

Remark. It is clear that for $(M_t, t \geq 0)$ submartingale (resp. supermartingale), $t \mapsto \mathbb{E}[M_t]$ is growing (resp. is decreasing).

Example 3.1. Let $B = (B_t, t \geq 0)$ be a (\mathcal{F}_t) -brownian motion, then the following processes are martingales

- (i) $(B_t, t \geq 0)$;
- (ii) $(B_t^2 1, t \ge 0)$;
- (iii) $(e^{\theta B_t \frac{\theta^2}{2}t}, \text{ with } \theta \in \mathbb{R}.$

Remark. If $(M_t, t \geq 0)$ is a martingale and $f : \mathbb{R} \to \mathbb{R}$ convex s.t. $\mathbb{E}[|f(M_t)|] < \infty$, then $(f(M_t), t \geq 0)$ is a submartingale.

Theorem 3.6 (Maximal inequality). Let $(M_t, t \geq 0)$ be a submartingale right continuous, then

$$
\mathbb{P}\left\{\sup_{s\in[0,t]}M_s>\lambda\right\} \ \leq \ \frac{\mathbb{E}[|M_t|]}{\lambda} \ ,
$$

for all $\lambda > 0$, $t > 0$.

Theorem 3.7 (Doob's inequality). Let $(M_t, t \geq 0)$ be a right continuous martingale and $p > 1 \in \mathbb{R}$. Then

$$
\left\| \sup_{s \in [0,t]} |M_s| \right\|_p \leq q \|M_t\|_p,
$$

for all $t \geq 0$, where $\frac{1}{p} + \frac{1}{q} = 1$.

And consequently

$$
\left\|\sup_{s\geq 0}|M_s|\right\|_p\quad\leq\quad q\sup_{s\geq 0}\|M_s\|_p
$$

3.4 Convergence and optimal stopping theorem

Theorem 3.8. Let $(M_t, t \geq 0)$ be right continuous submartingale s.t. $\sup_{t>0} \mathbb{E}[M_t] < \infty$ (one can show that a equivalent is $\sup_{t>0} \mathbb{E}[|M_t|] < \infty$) then,

$$
M_{\infty} := \lim_{t \to \infty} M_t \quad exists \ a.s.
$$

and $\mathbb{E}[|M_{\infty}|]<\infty$.

Proof. We define $D \subset \mathbb{R}_+$ a countable dense space. With $a \leq b \in \mathbb{R}, N_{ab}([0,t] \cap D)$ is the number of grows of $(M_s, s \in [0, t] \cap D)$ along [a, b]. We have

$$
\mathbb{E}[N_{ab}([0,t]\cap D)] \leq \frac{\mathbb{E}[(M_t-a)^+] }{b-a}
$$

$$
\leq \frac{\sup_{u\geq 0} \mathbb{E}[(M_u)^+ + |a|]}{b-a} < \infty.
$$

Then with $t \to \infty$ we have for all $a < b$, $N_{ab}(D) < \infty$ a.s. and so $\lim_{t \to \infty} M_t$ exists.

Then with Fatou we verify that this limit is not $\pm \infty$, and finally as D is dense we have the result on \mathbb{R}_+ by writing the definition of the limit. П

Corollary. Let $(M_t, t \geq 0)$ be a positive right continuous spermartingale, then $M_t \frac{a.s.}{t \to \infty} M_\infty$ and $\mathbb{E}[M_\infty] \leq \mathbb{E}[M_0] <$ ∞ .

Theorem 3.9. Let $p > 1$ be a real number and $(M_t, t \geq 0)$ a right continuous martingale s.t. $\sup_{t\geq 0} \mathbb{E}[|M_t|^p] < \infty$, then

$$
M_t \quad \xrightarrow[t \to \infty]{L^P \ a.s.} \quad M_\infty.
$$

Proof.

Theorem 3.10. Let $(M_t, t \geq 0)$ be a right continuous submartingale uniformly integrable (UI), then

- (i) $M_t \xrightarrow[t \to \infty]{L^1} m_\infty$; (ii) $M_t \xrightarrow[t \to \infty]{a.s.} m_\infty$;
- (iii) $\forall t \geq 0, M_t \leq \mathbb{E}[M_{\infty}|\mathcal{F}_t]$ a.s.

Theorem 3.11 (Optimal stopping theorem). Let $(M_t, t \geq$ 0) be a right continuous submartingale and $S \leq T$ stopping times. If (a) $(M_t, t \geq 0)$ UI or (b) $S \leq T$ bounded ($\exists C < \infty$) s.t. $T(\omega) \leq C$, for all $\omega \in \Omega$) then

$$
M_S \leq \mathbb{E}[M_t|\mathcal{F}_S] \quad a.s.
$$

And consequently $\mathbb{E}[M_S] \leq \mathbb{E}[M_t]$.

Example 3.2. $(M_t, t \geq 0)$ a right continuous submartingale and $S \leq T$, bounded stopping times. Then $\mathbb{E}[M_T | \mathcal{F}_S] \geq$ $M_{S\wedge T}$ a.s.

Indeed,

$$
\mathbb{E}[M_T|\mathcal{F}_S] = \mathbb{E}[M_T \mathbb{1}_{\{S \le T\}}|\mathcal{F}_S] + \mathbb{E}[M_T \mathbb{1}_{\{S > T\}}|\mathcal{F}_S]
$$

\n
$$
= \mathbb{E}[M_{T \vee S} \mathbb{1}_{\{S \le T\}}|\mathcal{F}_S] + \mathbb{E}[M_{T \wedge S} \mathbb{1}_{\{S > T\}}|\mathcal{F}_S]
$$

\n
$$
= \mathbb{1}_{\{S \le T\}} \underbrace{\mathbb{E}[M_{T \vee S}|\mathcal{F}_S]}_{\ge M_S} + \mathbb{1}_{\{S > T\}} \underbrace{\mathbb{E}[M_{T \wedge S}|\mathcal{F}_S]}_{=M_{S \wedge T}}
$$

\n
$$
\ge M_{S \wedge T}.
$$

Example 3.3. $(M_t, t \geq 0)$ a right continuous submartingale and T stopping time, then $(M_{T \wedge t}, t \geq 0)$ a right continuous submartingale.

Indeed for all $t \geq 0$, $M_{T \wedge t}$ is $(\mathcal{F}_{T \wedge t})$ -measurable so (\mathcal{F}_t) -measurable. And for all $t \geq s \geq 0$, $\mathbb{E}[M_{T \wedge t}|\mathcal{F}_s] \geq$ $M_{(T\wedge t)\wedge s} = M_{T\wedge s}.$

3.5 Example: Brownian motion

Example 3.4. Let $T_a := \inf\{t \geq 0 : B_t = a\}$. We know that $(M_t := e^{\theta B_t - \frac{\theta^2}{2}t}, t \ge 0)$ is a martingale. For $a > 0$, $(M_{T_a \wedge t}, t \geq 0)$ continuous bounded martingale, so UI. And so $\mathbb{E}[M_{T_a}] = \mathbb{E}[M_0] = 1$ with the optimal stopping theorem. On the other hand $\mathbb{E}[M_{T_a}] = \mathbb{E}[e^{\theta a - \frac{\theta^2}{2}T_a}]$ and then with $\lambda := \frac{\theta^2}{2}$ $\frac{1}{2}$,

$$
\mathbb{E}[e^{-\lambda T_a}] = e^{-\sqrt{2\lambda a^2}}
$$

.

Example 3.5. Let (X_t, Y_t) be Brownian motion in \mathbb{R}^2 with $X_0 = 0$ and $Y_1 = 1$. We are looking for the distribution of X_T with $T := \inf\{t \geq 0 : Y_t = 0\}.$

Let $a \in \mathbb{R}$.

 \Box

$$
\mathbb{E}\left[e^{iaX_T}\right] = \mathbb{E}\left[\mathbb{E}\left[e^{iaX_T}|Y_t\right]\right]
$$

$$
= \mathbb{E}\left[e^{-\frac{a^2}{2}T}\right]
$$

$$
= e^{-|a|},
$$

i.e. X_T has a standard Cauchy distribution.

4 Continuous semimartingales

4.1 Finite variation processes

Let $r > 0$ fixed and $a : [0, r] \to \mathbb{R}$ a finite variation continuous function with $a(0) = 0$. It is variation finite if $a = c_+ - c_-$ where $c_{\pm} : [0, r] \to \mathbb{R}$ growing functions.

We can assume that c_{\pm} are continuous and $c_{\pm}(0) = 0$. Let μ_{\pm} be Stieltjes measures associated to c_{\pm} , so

$$
\mu_{\pm}([0,t]) = c_{\pm}(t),
$$

for all $t \in [0, r]$.

Theorem 4.1 (Stieltjes). Let $F : \mathbb{R} \to \mathbb{R}$ growing and right continuous function, then there exists a unique measure μ on \mathbb{R} s.t.

$$
\mu([a,b]) = F(b) - F(a),
$$

for all $a < b \in \mathbb{R}$.

We can write

$$
\mu \quad := \quad \mu_+ - \mu_-\,,
$$

where μ_{\pm} are signed measures on [0, *r*]. Actually this decomposition is unique and exists if μ_{\pm} are orthogonal, *i.e.* for all A measurable $\mu_{+}(A) = \mu_{-}(A^{C}) = 0.$

We can also write

$$
|\mu| \; := \; \mu_+ + \mu_- \,,
$$

the total variation measure associated to the function a. And we have $\mu_{\pm} \ll |\mu|$ (*i.e.* ∀A s.t. $|\mu|(A) = 0 \Rightarrow$ $\mu_{+}(A) = 0$.

Proposition 4.2. With the subdivisions $0 =: t_0 < \cdots <$ $t_p := r$,

$$
|\mu|([0,r]) = \sup_{t_i} \sum_{i=1}^p |a(t_i) - a(t_{i-1})|.
$$

f.

Proof

We still have $a:[0,r] \to \mathbb{R}$ a finite variation continuous function with $a(0) = 0$, and $f : [0, r] \to \mathbb{R}$ measurable s.t. $\int_{[0,r]} |f| d|\mu| < \infty$. Then we define

$$
\int_0^t f(x) \, da(s) := \int_0^t f(s) \, \mu(ds) \n:= \int_0^t f(s) \, \mu_+(ds) - \int_0^t f(s) \, \mu_-(ds) \in \mathbb{R},
$$

for all $t \in [0, r]$. And also

$$
\int_0^t f(x) |da(s)| := \int_0^t f(s) |\mu|(ds)
$$

 :=
$$
\int_0^t f(s) \mu_+(ds) + \int_0^t f(s) \mu_-(ds) \in \mathbb{R}.
$$

We have the triangular inequality

$$
\left|\int_0^t f(s) \, \mathrm{d}a(s)\right| \leq \int_0^t |f(s)| |\mathrm{d}a(s)|.
$$

Lemma 4.3. Let $f : [0, r] \rightarrow \mathbb{R}$ be continuous and a sequence of subdivisons of $[0, r]$: $0 =: t_0^n < \cdots < t_{p_n}^n := r$ from which the interval goes to 0. Then

$$
\int_0^t f(s) \, da(s) = \lim_{n \to \infty} \sum_{i=1}^{p_n} f(t_{i-1}^n) \left(a(t_i^n) - a(t_{i-1}^n) \right).
$$

Proof. We define for all $n, f_n(s) := \sum_{i=1}^{p_n} f(t_{i-1}^n) 1 \mathbb{I}_{t_{i-1}^n, t_i^n}(s)$, so

$$
\sum_{i=1}^{p_n} f(t_{i-1}^n) \left(a(t_i^n) - a(t_{i-1}^n) \right) = \int_0^r f_n(s) \, da(s)
$$

$$
\xrightarrow[n \to \infty]{n \to \infty} \int_0^r f(s) \, da(s),
$$

with dominated convergence.

Now we can enlarge this result on \mathbb{R} . $a : \mathbb{R}_+ \to \mathbb{R}$ is a finite variation on \mathbb{R}_{+} (*i.e.* if for all $r > 0$, *a* is a finite variation function on $[0, r]$ continuous function with $a(0) = 0$. Let $f : \mathbb{R}_+ \to \mathbb{R}$ measurable s.t. $\int_0^\infty |f(s)||da(s)| :=$ $\sup_{r>0} \int_0^r |f(s)| |\mathrm{d}a(s)| < \infty$. Then

$$
\int_0^\infty f(s) \, \mathrm{d}a(s) \quad := \quad \lim_{r \to \infty} \int_0^r f(s) \, \mathrm{d}a(s).
$$

Let us now define a filtered space $(\Omega, \mathcal{F}, (\mathcal{F}_t), \mathbb{P})$, with the filtration (\mathcal{F}_t) that is right continuous and complete.

Proposition 4.4. Let $(V_t, t \geq 0)$ be a continuous and adapted process, with finite variations and $V_0 = 0$. And $(H_t, t \geq 0)$ a progressive process, s.t. $\forall t > 0$, $\int_0^t |H_s(\omega)| |dV_s(\omega)| < \infty$ a.s. Then,

$$
\left(\int_0^t H_s \, \mathrm{d}V_s, \ t \ge 0\right)
$$

is a continuous, adapted process, null in 0 and with finite variations.

$$
|\mu|([0,r]) = \sup_{t_i} |a(t_i) - a(t_{i+1})|.
$$

 \Box

4.2 Continuous local martingales

We note with $X := (X_t, t \geq 0)$, T a stopping time,

$$
X^T := (X_{t \wedge T}, t \ge 0).
$$

Definition 4.1 (Local martingale (continuous)). We call $M := (M_t, t \geq 0)$ a local martingale if there exists $(T_n, n \geq 1)$ growing sequence of stopping time s.t. $T_n \uparrow \infty$ a.s. and that for all $n \geq 1$, $M^{T_n} - M_0$ is a continuous martingale UI.

But be careful we don't know anything about M_t , especially $\forall t, \mathbb{E}[|M_t|] \leq \infty$.

We say that (T_n) reduces M.

- Remark. M if a continuous martingale \Rightarrow M is a local continuous martingale (just take $T_n := n$).
	- In the definition we can suppose that for all n, M^{T_n} M_0 is a bounded martingale.
	- M is a local continuous martingale, T stopping time, $\Rightarrow M^T$ local martingale.
	- (T_n) reduces M, (S_n) a stopping time $\uparrow \infty$ a.s. \Rightarrow $(T_n \wedge S_n)$ reduces M.
	- A linear combination of two local martingale is a local martingale.

Proposition 4.5. We have the following properties

- (i) M local positive continuous martingale, $\mathbb{E}[M_0] < \infty$ $\Rightarrow M$ supermartingale.
- (ii) M local continuous martingale s.t. $\forall t > 0$, $\mathbb{E}[\sup_{s\in[0,t]}|M_s|]<\infty \Rightarrow M$ martingale.
- (iii) M local continuous martingale s.t. $\mathbb{E}[\sup_{t\in[0,t]}|M_t|]<$ $\infty \Rightarrow M$ martingale UI.

Proof. Let (T_n) reduce M .

(i). $\forall n, M^{T_n} - M_0$ a martingale UI. We have M_0 is \mathcal{F}_0 -measurable so M^{T_n} is a martingale UI. And so for all $t \geq s \geq 0$,

$$
\mathbb{E}[\underbrace{M_{T_n\wedge t}}_{\stackrel{a.s.}{\longrightarrow} M_t}| \mathcal{F}_s] \quad = \quad \underbrace{M_{T_n\wedge s}}_{\stackrel{a.s.}{\longrightarrow} M_s}.
$$

So by Fatou's Lemma,

$$
\mathbb{E}[M_t|\mathcal{F}_s] \quad \leq \quad \liminf_{n \to \infty} \mathbb{E}[M_{T_n \wedge t}|\mathcal{F}_s] \ = \ M_s.
$$

(ii).∀t $\geq s \geq 0$, ∀A $\in \mathcal{F}_s$, $\mathbb{E}[M_{T_n\wedge t}1_A] =$ $\mathbb{E}[M_{T_n\wedge s}\mathbb{1}_A]$. And $M_{T_n\wedge t} \to M_t$, so by dominated convergence $\mathbb{E}[M_{T_n\wedge t}\mathbb{1}_A] \to \mathbb{E}[M_t\mathbb{1}_A]$. We have the same for the right hand side in the equality. So for all $A \in \mathcal{F}_s$,

$$
\mathbb{E}[M_t \mathbb{1}_A] = \mathbb{E}[M_s \mathbb{1}_A]
$$

\n
$$
\Rightarrow \qquad \mathbb{E}[M_t | \mathcal{F}_s] = \mathbb{E}[M_s | \mathcal{F}_s] = M_s.
$$

$$
9\,
$$

¹Recall that if a is at finite variation then

Theorem 4.6. Let M be a local continuous martingale, $M_0 = 0$ a.s. If M is at finite variation¹, then

$$
\mathbb{P}\{M_t = 0, \ \forall t \ge 0\} = 1.
$$

Proof.

4.3 Quadratic variation

Theorem 4.7. Let M be a local continuous martingale, then

- (i) There exists a unique² continuous adapted growing process, null in 0, that we note $\langle M \rangle = (\langle M \rangle_t, t \ge 0)$ s.t. $(M_t^2 - \langle M \rangle_t, t \ge 0)$ is a local continuous martingale.
- (ii) For all $t > 0$, for all $0 =: t_0^n < \cdots < t_{p_n}^n := t$ sequence of subdivision of $[0, t]$ where the intervals go to 0,

$$
\sum_{i=1}^{p_n} (M_{t_i^n} - M_{t_{i-1}^n})^2 \xrightarrow[n \to \infty]{\mathbb{P}} \langle M \rangle_t.
$$

Proof. (Unicity). Assume that X and Y satisfy the conditions of $\langle M \rangle$, then $M^2 - X$, $M^2 - Y$ are local martingales \Rightarrow X – Y, is a local martingale with finite variation, null in 0, and with Theorem 4.6, $\mathbb{P}\{X_t - Y_t = 0, t \geq 0\} = 1$. \Box

We call $\langle M \rangle$ the quadratic variation of M.

Example 4.1. Let B be a (\mathcal{F}_t) -brownian motion, then $\langle B \rangle_t = t$, consequence of the Levy theorem, or the fact that $(B_t^2 - t, t \ge 0)$ is a martingale.

Proposition 4.8. Let M be a local continuous martingale and T a stopping time, then

$$
\langle M^T \rangle = \langle M \rangle^T.
$$

Proof. We have by definition $(M^T)^2 - \langle M^T \rangle$ which is a local martingale, so let us just show that $(M^T)^2 - \langle M \rangle^T$ is also a local martingale and the proof is made. For $t \geq 0$,

$$
(M^T)^2_t - \langle M \rangle^T_t = M^2_{T \wedge t} - \langle M \rangle_{T \wedge t},
$$

which is a local martingale.

Theorem 4.9. Let M be a local continuous martingale, $M_0 = 0,$

- (i) $\mathbb{E}[\langle M \rangle_t] < \infty$, $\forall t \geq 0 \Leftrightarrow M$ is square-integrable. In this case $(M_t^2 - \langle M \rangle_t, t \ge 0)$ is a martingale null in 0.
- (ii) $\mathbb{E}[\langle M\rangle_{\infty}] \leq \infty \Leftrightarrow M$ is a martingale s.t. $\sup_{t\geq 0} \mathbb{E}[M_t^2] < \infty$ (³). In this case $(M_t^2 - \langle M \rangle_t, t \geq 0)$ is a UI martingale null in 0.

²In the sense that if (X_t) and (Y_t) follow this property then $\mathbb{P}\{X_t = Y_t, \forall t \geq 0\} = 1$.

Proof.

 \Box

Corollary. Let M be a local continuous martingale, $M_0 = 0$ a.s. Then,

$$
\mathbb{P}\{\langle M\rangle_t=0, \ \forall t\geq 0\}=1 \ \Leftrightarrow \ \mathbb{P}\{M_t=0, \ \forall t\geq 0\}=1.
$$

Proof. " \Leftarrow " is trivial. For the other implication, assume that $\langle M \rangle = 0$ a.s. then with (ii) of Theorem (4.9), M^2 is a UI martingale, and $\mathbb{E}[M_t^2] = \mathbb{E}[M_0^2] = 0.$ \Box

Definition 4.2. Let M, N be local continuous martingale,

$$
\langle M, N \rangle := \frac{1}{4} (\langle M + N \rangle_t - \langle M - N \rangle_t)
$$

=
$$
\frac{1}{2} (\langle M + N \rangle_t - \langle M \rangle_t - \langle N \rangle_t).
$$

And in particular, $\langle M, M \rangle = \langle M \rangle$.

- **Proposition 4.10.** (i) $\langle M, N \rangle$ is the unique continuous adapted process at f.v.⁴, null in 0, s.t. $MN - \langle M, N \rangle$ is a local martingale.
- (ii) $(M, N) \mapsto \langle M, N \rangle$ is a symmetrical bi-linear application.
- (iii) For all $t \geq 0$, $0 =: t_0^n < \cdots < t_{p_n}^n$, where the intervals go to θ ,

$$
\sum_{i=1}^{p_n} \left(M_{t_i^n} - M_{t_{i-1}^n} \right) \left(N_{t_i^n} - N_{t_{i-1}^n} \right) \xrightarrow[n \to \infty]{\mathbb{P}} \langle M, N \rangle_t.
$$

(iv) Let T be a stopping time, $\langle M, N \rangle^T = \langle M^T, N \rangle =$ $\langle M, N^T \rangle = \langle M^T, N^T \rangle.$

Proof. If we use the property of polarisation, *i.e.* $ab =$ $\frac{1}{4} ((a + b)^2 - (a - b)^2)$, we already proved everything. \Box

Remark. Let M, N be continuous martingales null in 0 s.t. $\mathbb{E}[\langle M\rangle_{\infty}] < \infty$, $\mathbb{E}[\langle N\rangle_{\infty}] < \infty$, then $MN - \langle M, N\rangle$ is a UI martingale.

Definition 4.3 (Orthogonality). Two martingales are said to be orthogonal if $\langle M, N \rangle = 0$, *i.e.* MN is a local martingale.

Theorem 4.11 (Kunita–Watanabe inequality). Let M, N be two continuous local martingales, and H, K two measurable processes $(\mathbb{R}_+ \times \Omega, \mathcal{B}(\mathbb{R}_+) \otimes \mathcal{F}) \to (\mathbb{R}, \mathcal{B}(\mathbb{R}))$ (5), then

$$
\int_0^\infty |H_s||K_s||d\langle M, N\rangle_s|
$$

\n
$$
\leq \sqrt{\int_0^\infty H_s^2 d\langle M \rangle_s} \cdot \sqrt{\int_0^\infty K_s^2 d\langle N \rangle_s}
$$

 \Box

³With the Doob inequality it is equivalent to have $\mathbb{E}[\sup_{t\geq 0} M_t^2] < \infty$.

⁴Finite variation.

⁵The process $(X_t, t \geq 0)$ is measurable if it is progressive.

Proof. In this proof we will use the notation $\langle M, N \rangle_s^t :=$ $\langle M, N \rangle_t - \langle M, N \rangle_s$, s ≤ t. Then with the Cauchy-Schwarz inequality we have (with theorem 4.7 and proposition 4.10 (iii)) for all $s < t$,

$$
\left| \langle M,N \rangle_s^t \right| \leq \sqrt{\langle M \rangle_s^t} \sqrt{\langle N \rangle_s^t},
$$

a.s. Then (4.1) hold a.s. for all $s < t \in \mathbb{Q}$, and with the continuity $\forall s < t \in \mathbb{R}$. We will now fix $\omega \in \Omega$ s.t. (4.1) is true.

Let us define $s =: t_0 < \cdots < t_p := t$ a subdivision,

$$
\sum_{i=1}^{p} \left| \langle M, N \rangle_{t_{i-1}}^{t_i} \right| \leq \sum_{i=1}^{p} \sqrt{\langle M \rangle_{t_{i-1}}^{t_i}} \sqrt{\langle N \rangle_{t_{i-1}}^{t_i}}
$$

$$
\leq \sqrt{\sum_{i=1}^{p} \langle M \rangle_{t_{i-1}}^{t_i}} \sqrt{\sum_{i=1}^{p} \langle N \rangle_{t_{i-1}}^{t_i}}
$$

$$
= \sqrt{\langle M \rangle_{s}^{t} \langle N \rangle_{s}^{t_i}}.
$$

By taking the supremum⁶ on all the subdivisions of $[s, t]$,

$$
\int_{[s,t]} |d\langle M,N\rangle_u| \leq \sqrt{\langle M \rangle_s^t \langle N \rangle_s^t}.
$$

(...)

4.4 Continuous semimartingale

Definition 4.4 (Semimartingale). A process $(X_t, t \geq 0)$ is a continuous semimartingale if it can written as

$$
X_t = X_0 + M_t + V_t,
$$

where M is a local continuous martingale, V is a continuous adapted v.f. process, and $M_0 = V_0 = 0$ a.s.

Remark. We call this decomposition the (unique) canonical decomposition of X.

Definition 4.5. Let $X_t = X_0 + M_t + V_t$, $Y_t = Y_0 + N_t + W_t$ be two continuous semimartingales. We set

$$
\langle X, Y \rangle_t \quad := \quad \langle M, N \rangle_t.
$$

In particular $\langle X \rangle_t = \langle M \rangle_t$.

Proposition 4.12. Let X, Y be two continuous semimartingales, and $0 =: t_0^n < \cdots < t_{p_n}^n$ a sequence of subdivision where the intervals go to 0 as $n \to \infty$, then

$$
\frac{\sum_{i=1}^{p_n} \left(X_{t_i^n} - X_{t_{i-1}^n} \right) \left(Y_{t_i^n} - Y_{t_{i-1}^n} \right) \xrightarrow[n \to \infty]{\mathbb{P}} \langle X, Y \rangle_t. \tag{X, Y}_t.
$$

6 Recall that

$$
\sup_{t_i} \sum_{i=1}^p |a(t_i) - a(t_{i-1})| = \int_{[0,r]} |da|.
$$

Proof. By polarisation we can prove the result with $X = Y$. Indeed,

$$
\sum_{i=1}^{p_n} \left(X_{t_i^n} - X_{t_{i-1}^n} \right)^2 = I_n + J_n + K_n,
$$

with,

$$
\begin{cases}\nI_n = \sum_{i=1}^{p_n} \left(M_{t_i^n} - M_{t_{i-1}^n} \right)^2 \\
J_n = \sum_{i=1}^{p_n} \left(M_{t_i^n} - M_{t_{i-1}^n} \right)^2 \\
K_n = 2 \sum_{i=1}^{p_n} \left(M_{t_i^n} - M_{t_{i-1}^n} \right) \left(V_{t_i^n} - V_{t_{i-1}^n} \right).\n\end{cases}
$$

we already have $I_n \xrightarrow[n \to \infty]{\mathbb{P}} \langle M \rangle_t = \langle X \rangle_t$. And

$$
\begin{array}{rcl} |J_n| & \leq & \underbrace{\max|V_{t_i^n} - V_{t_{i-1}^n}|}_{a.s.} \underbrace{\sum_{i=1}^{p_n}|V_{t_i^n} - V_{t_{i-1}^n}|}_{\leq \int_0^t |{\rm d} V_s| < \infty} \\ & & \xrightarrow{a.s.} & 0. \end{array}
$$

Same kind of proof for K_n .

 \Box

5 Stochastic integral \Box

5.1 Integration for bounded integral in L^2

We will first recall some concepts:

• Associativity: let $a : \mathbb{R}_+ \to \mathbb{R}$ continus and variation finite, $f\mathbb{R}_+$ $\rightarrow \mathbb{R}$ measurable, $\forall f$, $\int_0^t |f(s)||da(s)|$ < ∞ . We also have $b(t) := \int_0^t f(s) da(s)$ variation finite over \mathbb{R}_+ . Then for all $g : \mathbb{R}_+ \to \mathbb{R}$ measure s.t. $\forall t \geq 0, \int_0^t |g(s)||f(s)||da(s)| < \infty, \forall t \geq 0$

$$
\int_0^t g(s) \, \mathrm{d}b(s) = \int_0^t g(s) f(s) \, \mathrm{d}a(s).
$$

• Integral stopping: $\forall T \geq 0, \ \forall t \geq 0,$

 \int

$$
\int_0^{T \wedge t} f(s) \, \mathrm{d}a(s) = \int_0^t f(s) \, \mathrm{d}a(s \wedge T)
$$

$$
= \int_0^t f(s) \mathbb{1}_{[0,T]}(s) \, \mathrm{d}a(s).
$$

• Change of variable: $A, \alpha : \mathbb{R}_+ \to \mathbb{R}$ continuous, growing, $A(0) = \alpha(0) = 0$. Then for all $f : \mathbb{R}_+ \to \mathbb{R}_+$ measure, ∀t,

$$
\int_0^t f(\alpha(s)) \, dA(\alpha(s)) = \int_0^{\alpha(t)} f(u) \, dA(u).
$$

We know define the filtered space $(\Omega, \mathcal{F}, (\mathcal{F}_t), \mathbb{P})$. We use the notation

$$
\mathbb{H}^2 \quad := \quad \bigg\{ M : \mathrm{cont.} \, \, \mathrm{mart.}, \, \sup_{t \geq 0} \mathbb{E}[M_t^2] < \infty, \, M_0 = 0 \bigg\}
$$

 ∞ , $M_0 = 0$ } and $M^2 - \langle M \rangle$ martingale UI.

We observe that for T stopping time, $M \in \mathbb{H}^2 \Rightarrow$ $M^T \in \mathbb{H}^2$. And for all $M, N \in \mathbb{H}^2$,

$$
\begin{array}{rcl} \displaystyle |\langle M,N\rangle_\infty| & \leq & \displaystyle \int_0^\infty |{\rm d}\langle M,N\rangle_s| \\[1ex] & \leq & \displaystyle \langle KW \rangle & \sqrt{\int_0^\infty {\rm d}\langle M\rangle_s} \sqrt{\int_0^\infty {\rm d}\langle N\rangle_s} \\[1ex] & = & \sqrt{\langle M\rangle_\infty} \sqrt{\langle N\rangle_\infty} \, , \end{array}
$$

hence,

$$
\mathbb{E}[|\langle M, N \rangle_{\infty}|] \leq^{(CS)} \sqrt{\mathbb{E}[\langle M \rangle_{\infty}]} \sqrt{\mathbb{E}[\langle N \rangle_{\infty}]} < \infty.
$$

We will note $(M, N)_{\mathbb{H}^2} := \mathbb{E}[\langle M, N \rangle_{\infty}] \in \mathbb{R}$. We see that $(M, N)_{\mathbb{H}^2} = 0 \Rightarrow M = 0.$ Actually $(M, N)_{\mathbb{H}^2}$ is a scalar product on \mathbb{H}^2 . With the optimal stopping theorem we have $(M, N)_{\mathbb{H}^2} = \mathbb{E}[M_{\infty}N_{\infty}],$ and

$$
\begin{array}{rcl} \|M\|_{\mathbb{H}^2}^2 & := & (M,M)_{\mathbb{H}^2} \\ & = & \mathbb{E}[\langle M \rangle_{\infty}] \ = \ \mathbb{E}[M_{\infty}^2]. \end{array}
$$

Proposition 5.1. $(\mathbb{H}^2, (\cdot, \cdot)_{\mathbb{H}^2})$ is an Hilbert space.

Proof.

Now let us note, for all $M \in \mathbb{H}^2$,

$$
L^{2}(M) := \left\{ H \text{ prog. proc.} / \mathbb{E} \left[\int_{0}^{\infty} H_{s}^{2} d\langle M \rangle_{s} \right] < \infty \right\}
$$

= $L^{2}(\mathbb{R}_{+} \times \Omega, \mathcal{P}, d\mathbb{P} d\langle M \rangle_{s}).$

Let $H, K \in L^2(M)$, we define

$$
(H,K)_{L^2(M)} \quad := \quad \mathbb{E}\left[\int_0^\infty H_s K_s \, \mathrm{d}\langle M \rangle_s\right].
$$

Theorem 5.2. Let $M \in \mathbb{H}^2$, $\forall H \in L^2(M)$, $\exists! H \cdot M \in \mathbb{H}^2$ s.t.

$$
\langle H \cdot M, N \rangle = \underbrace{H \cdot \langle M, N \rangle}_{:= \ \bigl(\int_0^t H_s \, \mathrm{d} \langle M, N \rangle_s, \, t \geq 0 \bigr) },
$$

for all $N \in \mathbb{H}^2$.

The application

$$
L^2(M) \rightarrow \mathbb{H}^2
$$

$$
H \rightarrow H \cdot M
$$

is an isometry (linear that preserves the norm).

We call $H \cdot M = \left((H \cdot M)_t := \int_0^t H_s \, \mathrm{d}M_s, t \geq 0 \right)$ the stochastic integral (or Itô's integral).

 \Box

 \Box

 \Box

 \Box

Proof.

Remark. It is equivalent to $\{M \text{ local martingale}, \mathbb{E}[\langle M \rangle_{\infty}] < L^2(M)$, we can then define $H \in L^2(K \cdot M)$. Then $HK \in$ **Proposition 5.3** (Associativity). Let $M \in \mathbb{H}^2$, $K \in$ $L^2(M)$, we can define $HK \cdot M \in L^2(M)$, and

$$
HK \cdot M = H \cdot (K \cdot M).
$$

Proof.

Remark. Then we can write

(i)

$$
\int_0^t H_s(K_s \, \mathrm{d}M_s) = \int_0^t H_s K_s \, \mathrm{d}M_s.
$$

(ii) $\forall M, N \in \mathbb{H}^2, \forall H \in L^2(M), \forall K \in L^2(N),$

$$
\left\langle \int_0^{\cdot} H_s \, \mathrm{d}M_s, N \right\rangle_t = \int_0^t H_s \, \mathrm{d}\langle M, N \rangle_s ;
$$

$$
\left\langle \int_0^{\cdot} H_s \, \mathrm{d}M_s, \int_0^{\cdot} K_s \, \mathrm{d}N_s \right\rangle_t = \int_0^t H_s K_s \, \mathrm{d}\langle M, N \rangle_s ;
$$

$$
\left\langle \int_0^{\cdot} H_s \, \mathrm{d}M_s \right\rangle_t = \int_0^t H_s^2 \, \mathrm{d}\langle M \rangle_s.
$$

Proposition 5.4. Let $M \in \mathbb{H}^2$, $H \in L^2(M)$ and T stopping time, then

$$
(H \cdot M)^T = H \cdot M^T
$$

= $H1_{[0,T]} \cdot M.$

Proof.

 \Box

5.2 Integration for continuous semimartingales

Let M be a continuous local martingale, we define

$$
L^2_{loc}(M) := \left\{ H \text{ prog. proc.} / \mathbb{E} \left[\int_0^\infty H_s^2 \, d\langle M \rangle_s \right] < \infty \right\}.
$$

Theorem 5.5. Let M be a continuous local martingale, $H \in L^2_{loc}(M)$. Then

(i) $∃!H ⋅ M$ continuous local martingale, null in zero s.t.

$$
\langle H \cdot M, N \rangle = H \cdot \langle M, N \rangle \, ,
$$

for all N local martingale.

- (ii) With T stopping time, $H \cdot M^T = (H \cdot M)^T = H \mathbb{1}_{[0,T]}$. M .
- (iii) If $M \in \mathbb{H}^2$, $H \in L^2(M)$, then $H \cdot M$ is the Itô's integral defined in the last section.

Proof.

Remark. With M continuous local martingale, $H \in L^2_{loc}(M)$ and T stopping time,

(i) if
$$
\mathbb{E}\left[\int_0^T H_s^2 d\langle M \rangle_s\right] < \infty
$$
, then
\n
$$
\mathbb{E}\left[\int_0^T H_s dM_s\right] = 0 ;
$$
\n
$$
\mathbb{E}\left[\left(\int_0^T H_s dM_s\right)^2\right] = \mathbb{E}\left[\int_0^T H_s^2 d\langle M \rangle_s\right] ;
$$

(ii) if $\forall t \geq 0, \mathbb{E} \left[\int_0^T H_s^2 d \langle M \rangle_s \right]$ ∞ , then $\left(\int_0^t H_s dM_s t \geq 0\right)$ is a continuous martingale square

itegrable, null in zero, s.t. $\forall t \geq 0$,

$$
\mathbb{E}\left[\int_0^t H_s \, \mathrm{d}M_s\right] = 0 ;
$$

$$
\mathbb{E}\left[\left(\int_0^t H_s \, \mathrm{d}M_s\right)^2\right] = \mathbb{E}\left[\int_0^t H_s^2 \, \mathrm{d}\langle M \rangle_s\right].
$$

We say that H is a process that is locally bounded if for all t ,

$$
\sup_{s \in [0,t]} |H_s| < \infty \quad \text{a.s.}
$$

Definition 5.1. Let $X = X_0 + M + V$ be a continuous semimartingale, and H a progressive process locally bounded, then we define

$$
H \cdot X \quad := \quad H \cdot M \ + \ H \cdot V.
$$

Remark. Here $H \cdot M$ is a local continuous martingale, null in 0. And $H \cdot V$ is an adapted continuous process, with finite variations, null in 0.

Proposition 5.6. Here are few properties that we already saw. Let H, K progressive processes locally bounded, and X continuous semimartingale.

- (i) $H \cdot (K \cdot X) = HK \cdot X$.
- (ii) Let T be a stopping time, then $(H \cdot X)^T = H \cdot X^T =$ $H1_{[0,T]} \cdot X$.
- (iii) If X is a continuous local martingale (or process with finite variations), then it is the same for $H \cdot X$.
- (iv) $(H, X) \mapsto H \cdot X$ is bilinear.
- (v) Let H progressive s.t. $H_s(\omega) = \sum_{i=0}^{p-1} H^{(i)}(\omega) 1\!\!1_{]t_i, t_{i+1}]}(s)$, where $0 =: t_0 < \cdots < t_p$, $\forall i \ H^{(i)}$ is (\mathcal{F}_{t_i}) -measurable, then

$$
(H \cdot X)_t = \sum_{i=0}^{p-1} H^{(i)}(X_{t_{i+1} \wedge t} - X_{t_i \wedge t}).
$$

Proposition 5.7. Let X a continuous semimartingale and H a continuous adapted process, then $\forall t > 0$, $\forall 0 =: t_0^n$ $\dots t_{p_n}^n := t$ where the interval goes to zero with $n \to \infty$,

$$
\int_0^t H_s \, dX_s \stackrel{\mathbb{P}}{=} \lim_{n \to \infty} \sum_{i=0}^{p_n - 1} H_{t_i^n} \left(X_{t_{i+1}^n} - X_{t_i^n} \right).
$$

Proof.

Remark. We have to be careful, it's wrong to replace $H_{t_i^n}$ by $H_{t_{i+1}^n}$ or any other value in $]H_{t_i^n}$, $H_{t_{i+1}^n}$ in the equality.

Proposition 5.8 (Integration by parts). Let X, Y continuous semimartingales, then

$$
X_t Y_t = X_0 Y_0 + \int_0^t X_s dY_s + \int_0^t Y_s dX_s + \langle X, Y \rangle_t
$$

for all $t \ge 0$.

 \Box

Proof.

 $Remark.$ With M local continuous martingale,

$$
M_t^2 = M_0^2 + 2 \int_0^t M_s \, \mathrm{d}M_s + \langle M \rangle_t.
$$

6 Itô's formula and applications

6.1 Itô's formula

Theorem 6.1 (Itô's formula). (i) (Unidimensional) Let X be a continuous semimartingale, $f : \mathbb{R} \to \mathbb{R}$ in \mathcal{C}^2 , then

$$
f(X_t) = f(X_0) + \int_0^t f'(X_s) dX_s
$$

$$
+ \frac{1}{2} \int_0^t f''(X_s) d\langle X \rangle_s.
$$

(ii) (Multidimensional) Let X^1, \ldots, X^N be continuous semimartingales, $F : \mathbb{R}^N \to \mathbb{R}$ in \mathcal{C}^2 ,

$$
F(X_t) = F(X_0) + \sum_{i=1}^{N} \int_0^t \frac{\partial F}{\partial x_i}(X_s) dX_s^i
$$

+
$$
\frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \int_0^t \frac{\partial^2 F}{\partial x_i \partial x_j}(X_s) d\langle X^i, X^j \rangle_s.
$$

Proof.

Remark. (i) In the case $F(x, y) := xy$ we found the formula of the integration by parts.

- (ii) The Itô's formula is still true if $(X_t, t \geq 0)$ with value in $D \subset \mathbb{R}^N$ an open set (and convex), and if $F: D \to \mathbb{R}$ in \mathcal{C}^2 .
- (iii) If X^1, \ldots, X^k are continuous, adapted and with finite variations, the formula is still true if

$$
F \in \mathcal{C}^{\overbrace{1,\ldots,1}^k, \overbrace{2,\ldots,2}^{N-k}}
$$

(iv) The differential version is

$$
df(X_t) = f'(X_t) dX_t + \frac{1}{2} f''(X_t) d\langle X \rangle_t
$$

Example 6.1 (Multidimensional brownian motion). We will note $n \geq 1$ the dimension, $(B := (B_t^{(1)}, \ldots, B_t^{(n)})$, $t \ge 0$ a (\mathcal{F}_t) -brownian motion in \mathbb{R}^n (hence $B^{(1)}, \ldots, B^{(n)}$ are independant \mathcal{F}_t -brownian motions).

Let us first see the case $n = 1, f : \mathbb{R} \to \mathbb{R}$ in \mathcal{C}^2 ,

$$
f(B_t) = f(0) + \int_0^t f'(B_s) \, \mathrm{d}B_s + \frac{1}{2} \int_0^t f''(B_s) \, \mathrm{d}s.
$$

Now we take $F: \mathbb{R}_+ \times \mathbb{R} \to \mathbb{R} \in \mathcal{C}^{1,2}$, hence

$$
F(t, B_t) = F(0,0) + \int_0^t \left(\frac{\partial F}{\partial s} + \frac{1}{2} \frac{\partial^2 F}{\partial x^2}\right)(s, B_s) ds
$$

$$
+ \int_0^t \frac{\partial F}{\partial x}(s, B_s) dB_s.
$$

So if $\frac{\partial F}{\partial t} + \frac{1}{2} \frac{\partial^2 F}{\partial x^2} = 0$ we have $(F(t, B_t), t \ge 0)$ is a local martingale⁷. It is the case for $F_1(t,x) = x$, $F_2(t,x) = x^2 - t$, $F_3(t, x) = x^3 - 3tx$, etc. More generally

$$
H_n(x) := (-1)^n e^{\frac{x^2}{2}} \frac{d^n}{dx^n} \left(e^{-\frac{x^2}{2}} \right) ;
$$

$$
H_n(x,t) := t^{\frac{n}{2}} H_n \left(\frac{x}{\sqrt{t}} \right) \quad \text{(mod. Hermite's poly.)}
$$

and then $\forall n, (H_n(B_t,t), t \geq 0)$ is a continuous local mar- *Proof.* tingale. We also have, for all $t \geq 0$,

$$
\mathbb{E}\left[\int_0^t \left|\frac{\partial H_n}{\partial x}(B_s, s)\right|^2 \,\mathrm{d}s\right] < \infty
$$

sp we know that $\forall n, (H_n(B_t,t), t \geq 0)$ is a martingale⁸.

More generally, if B is a (\mathcal{F}_t) -brownian motion in \mathbb{R}^n , $F: \mathbb{R}^n \to \mathbb{R}$ in \mathcal{C}^2 ,

$$
F(B_t) = F(0) + \sum_{i=1}^{n} \int_0^t \frac{\partial F}{\partial x_i}(B_s) dB_s^i
$$

$$
+ \frac{1}{2} \int_0^t \Delta F(B_s) ds.
$$

6.2 Exponential semimartingale

Theorem 6.2. Let X be a continuous semimartingale, then ∃!Z continuous semimartingale s.t.

$$
Z_t = e^{X_0} + \int_0^t Z_s \, dX_s, \qquad t \ge 0.
$$

Moreover,

$$
Z_T = \mathcal{E}(X)_t = e^{X_t - \frac{1}{2} \langle X \rangle_t}.
$$

⁷Indeed we know that $\int dB_s$ is a local martingale.

⁸Indeed recall that if $\int_0^t H_s dM_s$ and if $\forall t > 0$, $\mathbb{E} \left[\int_0^t H_s^2 d\langle M \rangle_s \right] < \infty$, then $\left(\int_0^t H_s dM_s, t \geq 0 \right)$ is a martingale square integrable. ⁹Indeed recall that if M is a continuous positive supermartingale and $\mathbb{E}[M_{\infty}] = \mathbb{E}[M_0]$, then M is a martingale UI.

Proof.

Proposition 6.3. Let M be a continuous local martingale, $\lambda \in \mathbb{C}$, then

$$
\mathcal{E}(\lambda M)_t \quad := \quad \exp\left(\lambda M_t - \frac{\lambda^2}{2} \langle M \rangle_t\right) \,,
$$

 $t \geq 0$, is a continuous local martingale $\mathbb{C}\text{-}valued$.

Proof.

Let L be a continuous local martingale, $L_0 = 0$. Then $\mathcal{E}(L)_t$ is a positive continuous local martingale, $\mathcal{E}(L)_0 = 1$. Hence $\mathcal{E}(L)$ is a positive supermartingale and with Fatou's Lemma $\mathbb{E}[\mathcal{E}(L_{\infty})] \leq 1$. Now we want to know if $\mathbb{E}[\mathcal{E}(L)_{\infty}]=1$, *i.e.*⁹ $\mathcal{E}(L)$ is a martingale UI.

Theorem 6.4. Let L be a continuous local martingale, $L_0 = 0$ a.s., then $(i) \Rightarrow (ii) \Rightarrow (iii)$.

$$
(i) \ \ (Novikov) \ \mathbb{E}\left[e^{\frac{1}{2}\langle L\rangle_{\infty}}\right] < \infty.
$$

(ii) (Kazamaki) L continuous martingale UI, $\mathbb{E}\left[e^{\frac{1}{2}L_{\infty}}\right]$ < ∞.

$$
(iii) \ \mathbb{E}[\mathcal{E}(L)_{\infty}] = 1.
$$

6.3 Levy's characterization of the Brownian motion

We are in a filtered space $(\Omega, \mathcal{F}, (\mathcal{F}_t), \mathbb{P})$. Let $B =$ (B^1, \ldots, B^n) a \mathcal{F}_t -brownian motion \mathbb{R}^n -valued, then

$$
\langle B^i, B^j \rangle_t = t \mathbb{1}_{\{i=j\}}.
$$

Theorem 6.5 (Levy). (i) M continuous local martingale, $M_0 = 0$ a.s., then

$$
\langle M \rangle_t = t, \ \forall t \ge 0 \Rightarrow M \text{ is a } (\mathcal{F}_t)\text{-}brownian
$$

motion.

(ii) M^1, \ldots, M^n continuous local martingales null in 0, then

$$
\langle M^i, M^j \rangle_t = t \mathbb{1}_{\{i=j\}} \Rightarrow M \text{ is a } (\mathcal{F}_t)\text{-}brownian
$$

motion \mathbb{R}^n -valued.

 \Box

 \Box

 \Box

 \Box

Proof.

Example 6.2. Let B a (\mathcal{F}_t) -brownian motion, and

$$
\beta_t \quad := \quad \int_0^t \mathrm{sgn}(B_s) \, \mathrm{d} B_s \qquad t \geq 0 \,,
$$

then β is a continuous local martingale, $\beta_0 = 0$, $\langle \beta \rangle_t =$ $\int_0^t \text{sgn}^2(B_s) \, ds = t$. And with Levy's Theorem β is a (\mathcal{F}_t) brownian motion.

Example 6.3. Let (X, Y) two brownian motions \mathbb{R}^2 -valued, $X_0 = Y_0 = 0$. For $\theta \in \mathbb{R}$,

$$
\begin{array}{rcl}\nX_t^{\theta} & := & X_t \cos \theta - Y_t \sin \theta \; ; \\
Y_t^{\theta} & := & X_t \sin \theta + Y_t \cos \theta \, , \qquad t \ge 0.\n\end{array}
$$

Hence X^{θ}, Y^{θ} are two continuous martingales null in 0 and $\langle X^{\theta}\rangle_t = \langle Y^{\theta}\rangle_t = t, \, \langle X^{\theta}, Y^{\theta}\rangle_t = 0, \text{ then } (X^{\theta}, Y^{\theta}) \text{ is a brown-}$ nian motion.

More generally let B a (\mathcal{F}_t) -brownian motion, $A \in \mathcal{O}_n$, then $(AB_t, t > 0)$ is a brownian motion.

6.4 Dambis–Dubing–Schwarz Theorem

Theorem 6.6 (Dambis–Dubing–Schwarz). Let M be a continuous local martingale null in 0, then

$$
M_t = B_{\langle M \rangle_t}, \qquad t \ge 0
$$

with B a brownian motion.

Proof.

Remark. B is not a (\mathcal{F}_t) -brownian motion but a (\mathcal{F}_{τ_r}) brownian motion.

Theorem 6.7 (Knight). Let M^1, \ldots, M^n continuous local martingales, null in 0, $\langle M^i, M^j \rangle = 0$ for $i \neq j$, then

$$
\forall 1 \le i \le n \,, \quad M^i_t = B^i_{\langle M^i \rangle_t} \,, \qquad t \ge 0 \,,
$$

 (B^1, \ldots, B^n) is a brownian motion \mathbb{R}^n -valued.

6.5 Examples: multidimensional brownian motion

Example 6.4. Let M be a continuous local martingale, $M_0 = 0$ a.s., then

(i)
$$
\mathbb{P}\{\lim_{t\to\infty} |M_t| = \infty\} = 0.
$$

- (ii) $\{\lim_{t\to\infty} M_t \text{ exists (is finite)}\} = {\langle \langle M \rangle_{\infty} < \infty \} =$ $\{\sup_{t\geq 0} M_t < \infty \text{ or } \inf_{t\geq 0} M_t > -\infty \}$ a.s.
- (iii) $\{\langle M \rangle_{\infty} = \infty\}$ = $\{\limsup_{t \to \infty} M_t\}$ ∞ , lim inf $_{t\to\infty}$ $M_t = -\infty$ a.s.

[Proof to be written]

¹⁰We have to be careful, $M_0 = 1 \neq 0$.

Example 6.5 (Polar points and 2-d brownian motion). Let (β, γ) be a brownian motion \mathbb{R}^2 -valued, $\beta_0 = \gamma_0 = 0$. We define $M_t = e^{\beta_t} \cos \gamma_t$, $N_t = e^{\beta_t} \sin \gamma_t$. With Itô we have

$$
dM_t = M_t d\beta_t - N_t d\gamma_t ;
$$

$$
dN_t = N_t d\beta_t + M_t d\gamma_t ,
$$

so M, N are local martingales, and

$$
d\langle M \rangle_t = e^{2\beta_t} dt ;
$$

\n
$$
d\langle N \rangle_t = e^{2\beta_t} dt ;
$$

\n
$$
d\langle M, N \rangle_t = 0.
$$

Then with the Knight's Theorem¹⁰, $(M_t - 1, N_t) =$ $B_{\int_0^t e^{2\beta_t} ds}$ with B a brownian motion \mathbb{R}^2 -valued. Let us take $\omega \in \{\langle M\rangle_{\infty}\}\,$, then $\lim_{t\to\infty} M_t$ and $\lim_{t\to\infty} N_t$ exist and are finite, hence $\lim_{t\to\infty} (M_t^2 + N_t^2) = \lim_{t\to\infty} e^{2\beta_t}$ exists and is finite. So we conclude that $\langle M \rangle_{\infty} = \infty$ a.s., $\int_0^{\infty} e^{2\beta_s} ds = \infty$ a.s. So we can write $(M_t, N_t) = B_{(M)_t} + (1, 0)$, and as $|(M_t, N_t)| = e^{\beta_t} > 0,$

$$
\mathbb{P}\{\exists t \ge 0, B_{\langle M \rangle_t} = (-1,0)\} = 0
$$

\n
$$
\Rightarrow \mathbb{P}\{\exists s \ge 0, B_s = (-1,0)\} = 0
$$

\n
$$
\Rightarrow \forall a \in \mathbb{R}^2 \setminus \{0\}, \mathbb{P}\{\exists s \ge 0, B_s = 0\} = 0
$$

with rotation and scaling.

 \Box

Example 6.6 (3-d brownian motion). Let B be a brownian motion \mathbb{R}^3 -valued, then $\lim_{t\to\infty} |B_t| = \infty$ a.s.

To show that we just have to show that $\forall x \in \mathbb{R}^3 \setminus \{0\},\$ $\lim_{t\to\infty} |B_t + x| = \infty$ a.s. We define $Z_t := |B_t + x|^2 =$ $\sum_{i=1}^{3} (B_t^i + x_i)^2$, and with Itô's formula,

$$
dZ_t = \sum_{i=1}^3 2(B_t^i + x_i) dB_t^i + \frac{1}{2} \sum_{i=1}^3 2 dt
$$

=
$$
2 \sum_{i=1}^3 (B_t^i + x_i) dB_t^i + 3 dt.
$$

We define $f: \mathbb{R}_+^* \to \mathbb{R}, x \mapsto \frac{1}{\sqrt{x}}, f \in \mathcal{C}^2$, and $Y_t := f(Z_t)$, with Itô,

$$
Y_t = Y_0 - \frac{1}{2} \int_0^t \frac{1}{Z_t^{\frac{3}{2}}} dZ_s + \frac{1}{2} \frac{3}{4} \int_0^t \frac{1}{Z_s^{\frac{5}{2}}} d\langle Z \rangle_s
$$

= [loc. mart.] - $\frac{3}{2} \int_0^t \frac{1}{Z_s^{\frac{3}{2}}} ds + \frac{3}{8} \int_0^t 2^2 \frac{Z_s}{Z_s^{\frac{5}{2}}} ds$
= [loc. mart.]

So Y is a positive local martingale and $\mathbb{E}[Y_0] = \frac{1}{|x|} < \infty$, hence Y is a positive supermartingale, $\lim_{t\to\infty} Y_t = \xi \geq 0$ a.s. So $\lim_{t\to\infty} |B_t + x| = \frac{1}{\xi}$ a.s., and we know that $\limsup_{t\to\infty} |B_t + x| = \infty$ a.s., then $\lim_{t\to\infty} |B_t + x| = \infty$ a.s.

 $n \geq 2$, with $B_0 = x \in \mathbb{R}^n \setminus \{0\}$. We set $Z_t := |B_t|^2$, ping time, $\beta > 1$, $\delta > 0$, $x > 0$, then hence,

$$
dZ_t = 2\sum_{i=1}^n B_t^i dB_t^i + n dt.
$$

Now with $f: \mathbb{R}_+^* \to \mathbb{R} \in C^2$, $Y_t := f(Z_t)$,

$$
dY_t = f'(Z_t) dZ_t + \frac{1}{2} f''(Z_t) d\langle Z \rangle_t
$$

= [loc. mart.] + nf'(Z_t) dt + $\frac{1}{2} f''(Z_t) \times 4Z_t dt$.

So if $f'(y) + \frac{2}{n}y f''(y) = 0$, $\forall y \in \mathbb{R}^*_+$, then Y is a local martingale. The following functions have this last property:

$$
f(y) := \frac{1}{2} \ln y, \quad \text{for } n = 2, y > 0 ;
$$

$$
f(y) := y^{1 - \frac{n}{2}}, \quad \text{for } n \ge 3, y > 0.
$$

Now we use the notation $T_a := \inf\{t \geq 0 : |B_t| = a\}, a > 0.$ And define $0 < r < |x| < R$, then $(Y_{t \wedge T_R \wedge T_r}, t \ge 0)$ is a continuous bounded local martingale, so a martingale UI. With the optimal stopping theorem we have $\mathbb{E}[f(Z_{T_R \wedge T_r})] =$ $f(|x|^2)$. With $n = 2$,

$$
\mathbb{E}[\ln |B_{T_R \wedge T_r}|] = \ln |x|
$$

\n
$$
\Leftrightarrow \qquad \mathbb{E}[(\ln R) \mathbb{1}_{\{T_R < T_r\}}] + \mathbb{E}[(\ln r) \mathbb{1}_{\{T_r < T_R\}}] = \ln |x|
$$

\n
$$
\Leftrightarrow \qquad (\ln R) \mathbb{P}\{T_R < T_r\} + (\ln r) \mathbb{P}\{T_r < T_R\} = \ln |x|
$$

\n
$$
\Leftrightarrow \qquad \mathbb{P}\{T_r < T_R\} = \frac{\ln R - \ln |x|}{\ln R - \ln r}.
$$

So with $R \to \infty$, $\mathbb{P}\{T_r < \infty\} = 1$. Now with $n \geq 3$

$$
\mathbb{E}\left[|B_{T_R \wedge T_r}|^{2-n}\right] = |x|^{2-n}
$$
\n
$$
\Leftrightarrow \qquad R^{2-n} \mathbb{P}\{T_R < T_r\} + r^{2-n} \mathbb{P}\{T_r < T_R\} = |x|^{2-n}
$$
\n
$$
\Leftrightarrow \qquad \mathbb{P}\{T_r - T_R\} = \frac{|x|^{2-n} - R^{2-n}}{r^{2-n} - R^{2-n}},
$$

with $R \to \infty$, $\mathbb{P}\{T_r < \infty\} = \left(\frac{r}{|x|}\right)^{n-2} < 1$.

6.6 Burkholder–Davis–Gundy inequality

We are in the filtered space $(\Omega, \mathcal{F}, (\mathcal{F}_t), \mathbb{P})$. And for X process, we use the notation

$$
X_t^* \ := \ \sup_{s \in [0,t]} |X_s| \,, \qquad \forall t \in \mathbb{R}_+ \cup \{\infty\}.
$$

Theorem 6.8 (Burkholder–Davis–Gundy). Let $p \in \mathbb{R}_+^*$, then $\exists 0 < c_p \leq C_p < \infty$ s.t. ∀M continuous local martingale, $M_0 = 0$ a.s.,

$$
c_p \mathbb{E}\left[\langle M \rangle_\infty^{\frac{p}{2}}\right] \leq \mathbb{E}\left[(M^*_\infty)^p\right] \leq C_p \mathbb{E}\left[\langle M \rangle_\infty^{\frac{p}{2}}\right].
$$

And in particular, $\forall T$ stopping time,

$$
c_p\mathbb{E}\left[\langle M \rangle_T^{\frac{p}{2}}\right] \ \leq \ \mathbb{E}\left[(M_T^*)^p\right] \ \leq \ C_p\mathbb{E}\left[\langle M \rangle_T^{\frac{p}{2}}\right].
$$

Example 6.7. Let B be a brownian motion \mathbb{R}^n -valued, Lemma 6.9. Let B be a (\mathcal{F}_t) -brownian motion, T a stop-

$$
\mathbb{P}\left\{B_T^* > \beta x, \sqrt{T} \le \delta x\right\} \le \frac{\delta^2}{(\beta - 1)^2} \mathbb{P}\left\{B_T^* \ge x\right\} ;
$$

$$
\mathbb{P}\left\{\sqrt{T} > \beta x, B_T^* \le \delta x\right\} \le \frac{\delta^2}{\beta^2 - 1} \mathbb{P}\left\{\sqrt{T} \ge x\right\}.
$$

Lemma 6.10. Let $\xi \geq 0$, $\eta \geq 0$, r.v. s.t.

$$
\mathbb{P}\{\xi>2x,\,\eta\leq\delta x\}\quad\leq\quad \delta^2\mathbb{P}\{\xi\geq x\}\,,\qquad \forall \delta,x>0\,,
$$

then, $\forall p > 0, \exists c(p) < \infty$ s.t.

$$
\mathbb{E}[\xi^p] \leq c(p) \mathbb{E}[\eta^p].
$$

Proof. (Theorem 6.8)

Proof. (Lemma 6.9)
$$
\Box
$$

 \Box

Proof. (Lemma 6.10)
$$
\Box
$$

Example 6.8. Let M be a continuous local martingale, $M_0 = 0$ a.s.,

$$
\mathbb{E}[\langle M \rangle_{\infty}] < \infty \Leftrightarrow \mathbb{E}[(M_{\infty}^{*})^{2}] < \infty
$$
 (BDG)

$$
\Leftrightarrow M \text{ martingale bounded in } L^{2}.
$$

Example 6.9 (Wald identities). Let B be a (\mathcal{F}_t) -brownian motion, T a stopping time,

$$
\mathbb{E}\left[\sqrt{T}\right] < \infty \quad \Leftrightarrow \quad \mathbb{E}[\underbrace{B_T^*}_{= (B^T)^*_{\infty}}] < \infty \qquad \text{(BDG)}
$$
\n
$$
\Rightarrow \quad B^T \text{ martingale UI}
$$
\n
$$
\Rightarrow \quad \mathbb{E}[B_T] = \mathbb{E}[B_0] = 0 \qquad \text{(Opt. stopping)}
$$

$$
\mathbb{E}[T] < \infty \quad \Leftrightarrow \quad \mathbb{E}\left[(B_T^*)^2\right] < \infty \quad \text{(BDG)}
$$
\n
$$
\Rightarrow \quad B^T, \left((B_t^T)^2 - (T \wedge t), t \ge 0\right) \text{ mart. UI}
$$
\n
$$
\Rightarrow \quad \mathbb{E}\left[B_T^2 - T\right] = 0
$$
\n
$$
\Rightarrow \quad \mathbb{E}\left[B_T^2\right] = \mathbb{E}[T].
$$

6.7 Martingales of a brownian filtration

We are in the complete probability space $(\Omega, \mathcal{F}, \mathbb{P})$. Let B be a brownian motion. And we set (\mathcal{F}_t) (the usually augmentation of) the canonical filtration of B.

Theorem 6.11. Let (\mathcal{F}_t) be (the usually augmentation of) the canonical filtration of B, then for all M continuous local martingale, there exists a unique constant c and a progressive process $(H_t, t \geq 0)$ s.t. $\forall t > 0$, $\int_0^t H_s^2 ds < \infty$ a.s., s.t.

$$
M_t = c + \int_0^t H_s \, \mathrm{d}B_s.
$$

If moreover M is a continuous martingale with $\sup_{t\geq 0} \mathbb{E}[M_t^2] < \infty$ then

$$
\mathbb{E}\left[\int_0^\infty H_s^2\,\mathrm{d}s\right] < \infty.
$$

6.8 Girsanov theorem

We are in the filtered space $(\Omega, \mathcal{F}, (\mathcal{F}_t), \mathbb{P})$.

Theorem 6.12 (Girsanov). Define $(L_t, t \geq 0)$ a continuous local martingale, $L_0 = 0$ a.s. Assume that $\mathbb{E}[\mathcal{E}(L_{\infty})] = 1$ (i.e. $\mathcal{E}(L)$ is a martingale UI). Let $\mathbb Q$ be a probability measure on $(\Omega, \mathcal{F}_{\infty})$ defined by $\mathbb{Q} := \mathcal{E}(L)_{\infty} \cdot \mathbb{P}$ (i.e. $\forall A \in \mathcal{F}_{\infty}$, $\mathbb{Q} = \mathbb{E}[\mathcal{E}(L)_{\infty}1_{A}].$ Then for all M local continuous \mathbb{P} martingale,

$$
M - \langle M, L \rangle
$$

is a local continuous Q-martingale.

Proof.

Remark. (i)
$$
\mathbb{Q} \ll \mathbb{P}
$$
 on \mathcal{F}_{∞} , but not the inverse. And we have $\forall t \geq 0$, $\mathcal{Q} \sim \mathcal{P}$ on \mathcal{F}_t .

- (ii) If X is a P-semimartingale, it's also a \mathbb{O} semimartingale.
- (iii) A result $\mathbb{P}\text{-a.s.}$ or in probability hold un \mathbb{Q} .
- (iv) Set B a (\mathcal{F}_t) -brownian motion under \mathbb{P} , then $B-\langle B,L\rangle$ is a (\mathcal{F}_t) -brownian motion under Q.

Theorem 6.13 (Girsanov, horizon finite version). For $t >$ 0, let $(L_s, s \in [0,t])$ be a continuous local martingale, $L_0 = 0$ a.s. Assume that $\mathbb{E}\left[e^{L_t-\frac{1}{2}\langle L\rangle_t}\right]=1$. Let $\mathbb Q$ on $(\Omega,\mathcal F_t)$ be the probability measure defined by $\mathbb{Q} = e^{L_t - \frac{1}{2} \langle L \rangle_t} \cdot \mathbb{P}$. Then for all M local P-martingale, the process $(M_s - \langle M, L \rangle_s, s \in [0, t])$ is a local Q-martingale.

Example 6.10 (Cameron–Martin). Let $h : \mathbb{R}_+ \to \mathbb{R}$ measurable s.t. $\forall t, \int_0^t h^2(s) ds < \infty$. We define $L_t :=$ $\int_0^t h(s) \, dB_s, t \geq 0$. Then $(\mathcal{E}(L)_t, t \geq 0)$ is a positive supermartingale and as $\mathbb{E}[e^{\frac{1}{2}\langle L \rangle_t}] < \infty$, $\forall t > 0$, $(\mathcal{E}(L)_s, s \in [0, t])$ is a martingale UI.

There exists¹¹ a probability \mathbb{Q} s.t. $\forall t, \mathbb{Q}_{|\mathcal{F}_t} = \mathcal{E}(L)_t \cdot \mathbb{P}_{|\mathcal{F}_t}$. With the Girsanov theorem $\forall t \geq 0$, $(B_s - \int_0^t h(u) du, s \in$ [0, t]) is a ℚ-brownian motion. Then $(B_s - \int_0^t h(u) du, s ≥ 0)$ is a Q-brownian motion.

In particular let $h(t) = \gamma \in \mathbb{R}$, then $\mathbb{Q}_{|\mathcal{F}_t} = e^{\gamma B_t - \frac{1}{2}\gamma^2 t}$. $\mathbb{P}_{\mid \mathcal{F}_t}$. The process $(B_t - \gamma t, t \geq 0)$ is a Q-brownian motion and then B under $\mathbb Q$ is a brownian motion with drift γ .

We are looking at $T_a := \inf\{t \geq 0 : B_t = a\}$, for all

 $t \geq 0$,

$$
\mathbb{Q}\lbrace T_a \leq t \rbrace = \mathbb{E}\left[e^{\gamma B_t - \frac{1}{2}\gamma^2 t} \mathbb{1}_{\lbrace T_a \leq t \rbrace}\right]
$$

\n
$$
= \mathbb{E}\left[\mathbb{E}\left[e^{\gamma B_t - \frac{1}{2}\gamma^2 t} \mathbb{1}_{\lbrace T_a \leq t \rbrace}\Big| \mathcal{F}_{T_a \wedge t}\right]\right]
$$

\n
$$
= \mathbb{E}\left[\mathbb{1}_{\lbrace T_a \leq t \rbrace} \mathbb{E}\left[e^{\gamma B_t - \frac{1}{2}\gamma^2 t}\Big| \mathcal{F}_{T_a \wedge t}\right]\right]
$$

\n
$$
= \mathbb{E}\left[\mathbb{1}_{\lbrace T_a \leq t \rbrace} e^{\gamma B_{T_a \wedge t} - \frac{1}{2}\gamma^2 (T_a \wedge t)}\right]
$$

\n
$$
= \mathbb{E}\left[\mathbb{1}_{\lbrace T_a \leq t \rbrace} e^{\gamma a - \frac{1}{2}\gamma^2 (T_a \wedge t)}\right], \qquad T_a \sim \frac{a^2}{B_1^2}
$$

\n
$$
= \int_0^t e^{\gamma a - \frac{1}{2}\gamma^2 s} \frac{|a|}{\sqrt{2\pi s^3}} e^{-\frac{n^2}{2s}} ds
$$

\n
$$
= \int_0^t \frac{|a|}{\sqrt{2\pi s^3}} e^{-\frac{(\gamma s - a)^2}{2s}} ds.
$$

 \Box Now $t \to \infty$,

$$
\mathbb{Q}\lbrace T_a \leq t \rbrace = \mathbb{E}[e^{\gamma a - \frac{1}{2}\gamma^2 T_a} \underbrace{1_{\lbrace T_a \leq \infty \rbrace}}_{= 1 \mathbb{P} \text{-a.s.}}]
$$

$$
= e^{\gamma a} \underbrace{\mathbb{E}\left[e^{-\frac{1}{2}\gamma^2 T_a}\right]}_{= e^{-|\gamma||a|}}
$$

$$
= \left\lbrace \begin{array}{ll} 1 & \text{if } \gamma a \geq 0; \\ e^{2\gamma a} & \text{else.} \end{array} \right.
$$

7 Stochastic differential equations

7.1 Strong and weak solutions

Definition 7.1 (Stochastic differential equations). Let $d, m \geq 1$, the applications

$$
\sigma : \mathbb{R}_+ \times \mathbb{R}^d \rightarrow \mathcal{M}_{d,m}(\mathbb{R}) ;
$$

$$
b : \mathbb{R}_+ \times \mathbb{R}^d \rightarrow \mathbb{R}^d.
$$

are measurable and locally bounded. We define the SDE $E(\sigma, b)$

$$
dX_t = \sigma(t, X_t) dB_t + b(t, X_t) dt.
$$

We say that $E(\sigma, b)$ has a solution if there exists:

- $(\Omega, \mathcal{F}(\mathcal{F}_t), \mathbb{P})$ filtered space,
- $B = (B^1, \ldots, B^m)$ (\mathcal{F}_t)-brownian motion \mathbb{R}^m -valued,
- $X = (X^1, \ldots, X^d)$ continuous adapted process s.t.

$$
X_t = X_0 + \int_0^t \sigma(s, X_s) \, \mathrm{d}B_s + \int_0^t b(s, X_s) \, \mathrm{d}s.
$$

In the special case where $X_0 = x \in \mathbb{R}^d$, we say that $(\Omega, \mathcal{F}(\mathcal{F}_t), \mathbb{P}, B, X)$ is a solution of $E_x(\sigma, b)$.

Definition 7.2. (i) The weak existence of $E(\sigma, b)$ means that for all $x \in \mathbb{R}^d$, there exists a solution for $E_x(\sigma, b)$.

 11 This result is given by the theorem of Kolmogorov.

(ii) The weak uniqueness for $E(\sigma, b)$ means that $\forall x \in \mathbb{R}^d$, all the solutions for $E_x(\sigma, b)$ have the same law.

Example 7.1. Let $dX_t = sgn(X_t) dB_t$. For a fixed $x \in \mathbb{R}$, $\forall (\Omega, \mathcal{F}(\mathcal{F}_t), \mathbb{P}), \beta \text{ a } (\mathcal{F}_t)$ -brownian motion, $\beta_0 = x$. And we define

$$
B_t \quad := \quad \int_0^t \mathrm{sgn}(\beta_s) \, \mathrm{d}\beta_s.
$$

Then $\langle B \rangle_t = \int_0^t 1 \, ds = t$, and by Levy B is a (\mathcal{F}_t) -brownian motion. And then

$$
dB_t = sgn(\beta_t) d\beta_t
$$

$$
\Leftrightarrow \quad d\beta_t = sgn(\beta_t) dB_t.
$$

Example 7.2. Let $dX_t = dB_t + b(t, X_t) dt$. For all $(\Omega, \mathcal{F}(\mathcal{F}_t), \mathbb{P}), \forall X \ (\mathcal{F}_t)$ -brownian motion, let $\mathbb Q$ be a probability measure s.t.

$$
\mathbb{Q}_{|\mathcal{F}_t} = \exp\left(\int_0^t b(s, X_s) \, dX_s - \frac{1}{2} \int_0^t b(s, X_s)^2 \, ds\right) \cdot \mathbb{P}_{|\mathcal{F}_t}
$$

so with Girsanov, $B_t := X_t - \int_0^t b(s, X_s) ds$ is a (\mathcal{F}_t) brownian motion under Q. So $(\Omega, \tilde{\mathcal{F}}(\mathcal{F}_t), \mathbb{Q}, B, X)$ is a solution.

- **Definition 7.3.** (i) Strong uniqueness for $E(\sigma, b)$ if two solution X and \tilde{X} associated to the same filtered space and the same brownian motion s.t. $X_0 = \tilde{X}_0$ a.s. are indistinguishable.
	- (ii) We fix $(\Omega, \mathcal{F}(\mathcal{F}_t), \mathbb{P})$ and $B(\mathcal{F}_t)$ -brownian motion. We say that X is a strong solution for $E(\sigma, b)$ if X is adapted according to the canonical filtration of B.

Example 7.3. We retake the SDE $dX_t = sgn(X_t) dB_t$. There is no strong uniqueness, indeed if X is solution with $X_0 = 0$, then $-X$ is also solution.

Example 7.4. Consider the SDE

$$
dX_t = \lambda X_t dB_t,
$$

with $\lambda \in \mathbb{R}$. We know from Theorem 6.2 that there is strong uniqueness and for all x the solution is $X_t =$ $x \exp \left(\lambda B_t - \frac{1}{2} \lambda^2 t \right).$

Theorem 7.1 (Yamada–Watanabe). If there is weak existence and strong uniqueness then there is weak uniqueness.