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1 Introduction

This introduction deliberately is incomplete from a math-
ematical point of vue. Its aim is just to introduce some
notions on stochastic calculus without being rigorous at all.

1.1 Brownian motion

Let us consider a set of r.v. in R, X; is the value at time t.
Between the times ¢ and ¢ + h with h > 0,

AXE = X — X, (L1)

h
= Ht Ey -

This is the fundamental hypothesis, when h is small AX} is
the product of Hy which is a continuous function observable
at time ¢, and e r.v. independent from all that happen
until ¢ and s.t. its law only depends on h.

Remark. This assumption is quite natural if X is determin-
istic then with H, is its derivative and e} = h ; and you find
the Taylor expansion.

Let’s take h = hy + hy with hq, ho > 0, then

KXitny, + HH‘hl‘e?jhl (13)
Xp + Hiel + Hypn,el2, (1.4)

Xiyn =

Hyel

And with hy < h very small by continuity we have Hyp, ~
H;, so we deduce

eh o~ e o4 5t+h1 (1.5)
By iterating,
5 h b b
&~ o el tot el o (1.6)

so el is the sum of n r.v. of same law, by the central limit
el follows a normal law. We note my, its mean and o? its
variance. With (1.5) we deduce

Mhy+hy, = Mphy + Mp,
1.7
{ 0i2l1+h2 = Ul21,1 + 0}212 ( )
mp = bh
& &' = bh + o(Bign — By). (1.9)

where (B, t > 0) is a brownian motion.

Definition 1.1 (Brownian motion). Continuous set of r.v.
where each r.v. is gaussian, s.t. B; ~ N(0,¢) and By, — By
is independent from (Bs, s € [0,1]).

We then have with this definition,
Xevn =

Xt -+ Ht(bh+U(Bt+h *Bt)) (110)

If o = 0, we simply have the differential equation <3 de = bHy,
i.e.

t
X, = X + / bH, ds. (1.11)
0

Else if 0 > 0,

t t
X, = X + / bH, ds + /UHS dB, .(1.12)
0 0

—_——

stochastic integral

1.2 Stochastic integral

Here (H¢,t > 0) is a continuous process, we also assume
that for all ¢, H; is observable. And it is very important
that (Byyn — By, h > 0) and (Hy, Bs, s € [0,t]) are indepen-
dent.

We now want to give a sense to the stochastic integral
fot H, dB;. Let us begin with the simple case where the
function ¢ — H; is a floor function, i.e.

Z Hy, :“‘[ti7ti+1 [(t)'
i=1

We then define its stochastic integral,

t
/ H,dB, 2
0

Lemma 1.1. Let & and n;, © € [1,n], square integrable
.. for all i, Eln;] = 0 and n; is independent from
(gjvnkaj € [[Ld]ak € [172]]) Then;

(i) E[SI &mi] = 05
(ii) B (S €mi)’] = Sy BIEAEDR2),
Proof. For (i).

n
> Hy(Bint — Biar). (1.13)

=1

E Zfim] = ZE[gmi] ) (linearity)
i=1 i=1

= El&] Elni , i AL

; [E]J?%l &Gl

For (ii).
n 2 n
(Zfiﬁi) = E Z(gznz Z &&5min;

i=1 i=1 1<i<j<n
— ZE

+ 2 [€&&imil Elny] -

1<§<n ’ :;;



Lemma 1.2. Let (H;,t > 0) be a constant piecewise pro-
cess. If E[H2] < oo, then for all t >0,

(i) IEUOtHS dBS] — 0

(i) E {(fotHs st)z] - E[fOtHf ds]

Proof. Write the integral with the definition (1.13) then take
& = H;, and n; := By, a¢ — By, a¢ from Lemma, 1.1. O

We can then extend the stochastic integral to other pro-
cess as each process can be written as the limit of constant
piecewise processes.

1.3 Girsanov theorem

Proposition 1.3. Letr >0 and f € L2([0 ] ds), then for
allt € [07], fy f(s) dBs ~ N (0, f; f*(s) d

Proof. A(frn), fn = p”o al ]l[t 4r and f, — f in

L?([0,7],ds). We saw that fo fa(s) dBs — fo ) dBs
in L2(Q). And [ fa(s) dB, = (B, nt — Btw)
follows the normal law N (0, fg fn(s)? ds). O

Let us note
T 1 T 9
‘= exp f(s)dBs—= [ f(s)®ds].
0 2 Jo
And let us define the probability Q on (2, F) by,
Q:E[Z]LA]:/ 1,2 dP, Ae€eF.
Q

Then for all r.v. X,

:/Xd(@:/XZ dP = E[X Z].

Q Q

Theorem 1.4 (Girsanov’s theorem). The process defined

by
¢
By — / f(s) ds
0

18 a brownian motion on Q.

ét =

1.4 Itd’s formula

Theorem 1.5. Let t > 0 and 0 = tfj < --- <
ty =t a set of subdivisions of [0,t] where the interval
limy, 00 MaXp<i<p, —1 (t?+1 — t?) = 0. Then,
pn—1
L2
Z (Btn — Bt ) — 1
n—oo

Proof. We just have to see that for all f: R — R bounded
measurable function,
Pn—1

=3 1) (B, = Be) = (=) o
=0

We will use the Lemma 1.1 with & = f (Bt?) and n; =

(Bt?+1 - Bt?)2 - (t;ﬁrl - t?)
pn—1

E[SY] = Y E[f*Bu)EM] ,
=0

and 7, has the same law as (], — ¢/)(Bf — 1) and

E[(Bf — 1)?] = 2 as (Bf — 1) ~ x?(1). We then note
¢ :=sup,ep 2f%(z) < o0,
pn—1
E[22] < > (7, —t)°
i=0
pn—1
< e ) S )
-
< n _ 4N
< oty max (- ) S50

Theorem 1.6 (Itd’s formula). If f : R — R is in C? then,

/f dB+/f”

Theorem 1.7 (Ito’s formula). If f: Ry xR — R is in CH?

the'r%
S B (]S

8f 1 [t o%f
—+ 8 (S B ) dBS + 5/0 @(S,BS) dS.

f(By) =

f(t,By) = f(0,Bo)

2 Brownian motion

2.1

We work in the probability space (€2, F,P) that is complete,
i.e. that F contains all the P-negligible sets. We call random
processes all sets of random variables.

Definition and first properties

Definition 2.1 (Brownian motion). (B, t > 0) is a Brow-

nian motion (real and null in 0) if:
(i) t — By (the path) is a.s. continuous on R,.
(ii) Bp =0 a.s.
(ifi) Vn > 2, Y0 < t; < -+ < to, By,
B, , By, are independant.
(iv) Vt > s >0, By — Bs ~ N(0,t — s).

Remark. The Brownian motion is a process with indepen-
dent increase (iii) and stationary (iv), i.e. it is a Levy pro-
cess.

- B, ,,...,Bt, —



Definition 2.2 (Gaussian process). (X;,t € T) is a Gaus-
sian process if for all n > 1 and for all (¢y,...,t,) € T,
(Xt,,...,Xz,) is a Gaussian vector.

n?

Proposition 2.1. (X;,t > 0) is a brownian motion iff a.s.
t — Xy is continuous on Ry and (z¢,t > 0) is a centred
gaussian process of covariance Cov(X;, Xs) = tAs, Vs, t > 0.

Proof. “=". For all 0 < t; < < tp, Xi, —
Xe, 1y Xty — Xty , Xy, are Gaussian and independant r.v.
so (X, — X, 1y Xty — X4y, X4, ) is a Gaussian vector,
so (Xy,...,X,) is a centred Gaussian vector.
Forallt>s >0,
Cov(Xy, Xs) 2= E[X: X — E[X{E[X,]
0
— E(X, - X,)E[X,] + E[X]

=0
= E[(X,— X0)?] = Var[X, — Xo] = s — 0.

“e”. (ii). Var[Xo] = E[X2] = 0 and E[X,] = 0.

(iii). YO <t < -+ <tp, (X¢y,..., Xt, ) is a gaussian vector,
so (X, Xy, — X4y ..., X4, — Xy, ) is also a Gaussian vec-
tor. To show the independence we just have to show that
the covariance is null. For all 1 <i¢ < j <mn,

C = Cov(Xy, — Xy, ,, Xy, — Xy;,)
Cov(Xy, — Xy;) — Cov(Xy,_, — Xy,
— Cov(Xy, — Xy, , + Cov(Xy, , — Xy,
= t—ti1—ti+t;—1=0.

(iv). Forallt > s > 0, X; — X, is a centred Gaussian r.v.
and,

Var[X; — X;] = Var[X;] + Var[X,] — 2Cov[X;, X,]
= t+s—25 = t—s.
O
Theorem 2.2 (Wiener). The brownian motion ezists.
Proof. O

Proposition 2.3. If B; is a Brownian motion, then the
following processes are also:

(i) X, = —B,.
(ii) X, = 1B..
(iii) a >0, X; = LB
(iv) s >0, X; = Byys — Bs.
(v) r>0, Xy = B, — By, avec t € [0,7].

Example 2.1 (Brownian bridge). Let B be a Brownian
motion, we define b, := B; — tB; with t € [0,1]. This is a
centred Gaussian process with covariance s At — st.

o (bt €10,1]) 1L By.

o If (by,t € [0,1]) is a Brownian bridge then (by_¢, ¢ €
[0,1]) also.

o If (byyt € [0,1]) is a Brownian bridge then B; :=

(1+ t)bl%rt is a Brownian motion.

Note that b, = (1 —¢)B_+_.

1—t

Example 2.2. We have lim;—9 B; = 0, a.s. By inverting
>

time,

B
lim = = 0.
t—oo ¢

Theorem 2.4 (Lévy). Lett > 0 and 0 =: tf < --- <
ty. =t a set of subdivisions of [0,t] where the interval

maxo<i<p, —1 (t?+1 — t?) m} 0. Then,

pn—1

2 .2
S (Boy, - 5) ot
— it1 B n—o00
i=

See the proof after Theorem 1.5.

2.2 Markov property

We denote by (€2, F,P) a complete probability space. De-
fine (F¢,t > 0) a filtration, i.e. a growing set of sub-tributes
from F. For all 0 < s < t:

FoCFs CF CF.

Example 2.3. Let (X;,t > 0) be a stochastic process and
define for all ¢ > 0,

Fi = o(Xs,s€][0,¢]).

Then (F3) is a filtration, and it is called the canonical filtra-
tion of the process X.

We say that (By,t > 0) is a (F;)-Brownian motion if:
(i) Vt >0, By is Fy-measurable (adapted) ;

(ii) ¥s >0, (Byys — Bs,t > 0) is a Brownian motion inde-
pendent from F;.

Theorem 2.5 (Simple Markov property). We note B a
Brownian motion and (F;) its associated canonical filtra-
tion, then B is a (F;)-Brownian motion.

In other words, for all s > 0, (Bi_s —
o(By,u € [0, s]).

Bg,t > 0) 1L

Proof. We just have to show the independence, i.e. that
the vectors (By, 45 — Bs, ..., Bt, +s— Bs), (Bs,, ..., Bs, ) are
independent forall0 <t < -+ <t,,0< s < - < s, <s.

We have Cov(Bi, s — Bs,Bs;) = Cov(Bi,4s,Bs;) —

COV(BS,BSJ.) =S85 —85; = 0. And (Bt1+s — BS7 SN 7Btn+s —
Bs, Bs,, ..., Bs,) is a gaussian vector, so the two previous
vectors are independent. O



Let (F%) be a filtration. For all ¢ > 0 we note

‘Ft_;,_ = m ]:u

u>t
It is clear that it is also a filtration.

Theorem 2.6 (The 0-1 law of Blumenthal). Let B be a
Brownian motion and (Ft) its associated canonical filtra-
tion. Then for all A € Foi, P(A) =0 or 1.

Proof. Let us first show that B is a (F:4)-Brownian mo-
tion. As previously we just have to show the independence
(the other points are clear). So we have to show that, for
A€ Fer,0<t; <+ <ty and F : R” — R bounded and
continuous:

E[]IAF(Bt1+S _BS)"-7Bt"+8 _BS)] =
P(A)E[LAF (B, 1s, ..., Bi1s)].

Let € > 0, the process t — Byys+e — Bste is independent
from Fsie and a fortiori Fei. So,

(2.1)

E[1AF(Bt,4s4e — Boyey oo, Bt 1s4e —
P(A)E[LAF(By, opes .-

Bs+s)] =

L) Btn+s+6)}'

By € — 0, an argument of continuity and the dominated
convergence theorem we obtain (2.1).

So we have that Foi is independent from o(By,t > 0).
If A€ For = \ysoFu C o(B,t > 0), then A 1L A and
P{A} = P{A}>2. O

Example 2.4. Let 7 :=inf{t > 0: B, > 0}, then 7 =0 a.s.
Indeed,

{r=0} = ﬂ{susz>O}, Ve >0
t€]0,e] s€[0,t]
teQ  °

So {1 = 0} = N.u¢F: = Fos, we now know that P{r =
0} =0or 1. Forallt >0, P{r <t} > P{B, > 0} = % and
P{r <t} =lim.,o L P{r <t} > 5, then 7 =0 a.s.

By time inversion we also see that {¢ > 0 : B, = 0} is
non bounded a.s.
Let (F%) be a filtration, we define

]:oo = U(ft,tZO),

the tiniest tribe that contains all the elements of the tribes
Fi.

Definition 2.3 (Stopping time). The application T : Q —
R4 U {oo} is a stopping time if for all ¢ > 0, {T' < t} € F;.

Example 2.5. The constant T = t is a stopping time. And
T, := inf{t > 0 : By = a} is also a stopping time, indeed
{T. <t} = {SUPogsgt By =a} € F;.

Definition 2.4. Let T be a stopping time. The tribe of
previous events to T is

Fr = {A€Fo :Vt>0,n{T <t} e F}.

Theorem 2.7 (Strong Markov property). We note B a
Brownian motion and (F;) its associated canonical filtra-
tion. Let T be a stopping time. Conditionaly to {T < oo},
the process (Bryy — Br,t > 0) is a Brownian motion inde-
pendent from (Fr).

Proof. O

Theorem 2.8 (Reflexivity). Let B be a Brownian motion.
With t > 0, we note Sy := sup¢jo 4 Bs. Then,

P{S; > a,B, <b} = P{B;>2a—b}.

foralla>0,b<a.
In particular for all fived t, Sy ~ |By|.

Remark. It is just for ¢ fixed, the equality in law between
(St,t > 0) and (| B, t > 0) is false.

Proof.

P{S, >t,B, <b} = P{T,<t B, <t}
P{T, <t,B,_1, <b—a},
B, := By.1, — Br,
= P{(TaaB) € A},
where Ay := {(u,z) € Ryx?,0 <u < tz(t —u) <b—a)}.
We have P(TG,B) =Pr,®PgasT, 1L B. And B ~ —B, so,

P{S, >t,B, <b} = P{(T,,—B;) € A}

= P{T,<t,—B, 7, <b—a}

= P{T,<t,—(Bi—a)<b—a}
Sit>a Bi>2a—b

= P{B;>2a—-0b}, as2a—b>a.

To prove that they have the same law,

P{S,>a} = P{S,>a B <a}+P{S,>a B, > a}
P{B; > 2a —a}+P{ B, >a}

=—B,;

= P{|B:| > a}.

Corollary. For allt > 0, the density of (S, By) is

2(2a — b) (2a — b)?
W €xp <2t> IL{a>0,b<a}~
Example 2.6. Let ¢ > 0 and a > 0,
P{T, <t} = P{S,>a}
= P{[Bi| = a}
= P{|VtBi| >a}

a? }
= P<t> .
{ ~ [B1f?

2
So T, ~ &5
a B%



2.3 Semi-group of the Brownian motion

Let s > 0 and f : R — R, measurable, we can write

E[f(Bi+s)|Fs] = E[f(Biys — Bs + Bs)|Fs]

(Pef)(Bs)
e R, Bf =
= exp (— 525 ) Fly)dy.

(P, t > 0) is the semi-group of B. Indeed,

Piysf(x)

where for all =z

Jr

E[f(B: + »)] =

E[f(Bt+s + )]
= E[E[f(Bits + )| F]]
E[(Psf) (Bt + )]
Pi(P,f)(x).

Proposition 2.9 (Feller property). Let f € Cy (continuous
s.t. limg oo f(2) = 0), then Pif € Co and limyo P f = f
uniform on R.

Proposition 2.10 (Infinitesimal generator). If f € C?

(class C? on a compact space), then limg 0 w =

o)

There is a strong link with the heat equation. Let
u(t,z) == Pf(x). On a u(0,z) = f(z). If f is measur-
able and bounded then,

1%
20x2°

o _
ot

3 Continuous-time martingale

3.1 Progressive processes

Let (2, F, (F),P) be a filtered (probability) space. We de-
fine

ft+ = ﬂﬁtv

u>y
for ¢ > 0.

Definition 3.1 (Right continuity). We say that (F3)i>o is
right continuous if V¢t > 0, F;y = F.

Definition 3.2 (Complete). We say that (F;);>o is com-
plete if F( contains all the P-null sets.

Proposition 3.1. We have a bunch of properties about the
process (X¢,t > 0):

(i) it is right (respectively left) continuous if a.s. t — X
is right (respectively left) continuous.

(i) it is adapted if Vt >, Xy is Fy-measurable ;

(i) it is progressive (or progressively measurable) if Vt > 0,
(s,w) — Xs(w) is measurable along B([0,t]) ® F;.

We have (X;,t > 0) progressive = (X;,t > 0) adapted.
The reverse is generally false.

Proposition 3.2. If (F;) is complete and (X, t > 0)
a process in R, adapted, right (or left) continuous, then
(Xt,t > 0) is progressive.

Proof. Let (X¢,t > 0) be right continuous, so Vt > 0, Vn > 1
we set

() .
Xs . X(L%i+1)t,/\t )
with s € [0,4]. And Vs € [0,4, X™ = X,. Now for all
A€ B(RY), {(s,w) € [0,t] x Q: Xgn)(w) € A} can be writ-

ten as

Uy ([9525 5  < X2 ) ) U (8 < X7 (4) -

Where X ;'(A) is Fxe-measurable so F;-measurable. And

Fi is com'iolete so P-null sets make no trouble and X; is
B([0, t]) ® Fr-measurable as limit of B([0, t]) ® F;-measurable
functions. 0

Let AC Ry x Q and A € B(Ry) ® F, is progressive if
(7¢(w) := Ty wyea,t > 0) is a progressive process. And

o {A progressive} is a tribe called the progressive tribe

o (X;,t > 0) is pregressive < (t,w) — X¢(w) along the
progressive tribe.
3.2 Stopping time
Let (2, F, (F),P) be a filtered space. We recall
Fo = o(F,t>0),

and that T : Q@ — R U {oo} is a stopping time if V¢ > 0,
{T <t} eF.

Definition 3.3. If T is a stopping a time we set

Fr = {A€eFo: An{T <t} € F,Vt > 0}.

Proposition 3.3. We have the following properties:
(i) if S <T stopping times = Fs C Fr ;

(ii) S, T stooping times = SVT, SAT stopping times and
Fsar = Fs N Fr ;

(iir) {S <T}A{S <T}{S=T} € Fsnr ;

(iv) (Ft) right continuous and T stopping time < {T <
t} € Fi, Vi >0 ;

(v) (Ft) right continuous and (Ty,) set of stopping time =
T :=inf, >, T, stopping time and Fr =(),>, Fr,-



Proof. (i). VA € Fg we have A € Fo this is trivial. We
just have to show that AN {T <t} € F, for all ¢. Indeed,

An{T <tye F = An{S<t}n{T <t}.
N—— e N——

cF cF:

(ii). For all ¢,

(SATY = {S<tin{r<t},
—— ~—

cF: cF

so {S AT} € F; and it’s a stopping time. We use the same
proof for SV T.

Fsar C Fs and C Fr so Fsar C Fs N Fr.
A€ FsN Fr, and for all ¢,

Now let

AN{SAT <t} = (An{S<tHUAN{T <t}) € F,
eF EeFy
so A € Fsar and Foar D Fg N Fr. O

Proposition 3.4. Let T be a stopping time, for alln > 0
set

T,

— k
= 227]1{27»1<T§2%} + OO]l{OO} ,
k=0

then (T,,,n > 1) is a stopping time set that converges to-
wards T'.

Proof. For all t,

{T, <t} = {T<t}n{T, <t} €F.
————
eFr
So it’s a stopping time. O

Theorem 3.5. Let (X;,t > 0) be a progressive process in R4
and T a stopping time. Then 1ir ooy X is Fr-measurable.
If furthermore X¢(w) == Xoo(w) € R, Vw € Q then

— 00

Xt is Fr-measurable.

3.3 Continuous time martingale
Let (2, F, (F:),P) be a filtered space.

Definition 3.4 (Martingale). We call (My,t > 0) a martin-
gale (respectively submartingale, supermartingale) if

(i) (M, t > 0) is adapted ;
(i) V¢ >0, E[|M,]] < o0 ;
(i) Vt > s > 0, E[M;|Fs] = M a.s. (respectively >, <).

Remark. It is clear that for (My,t > 0) submartingale (resp.
supermartingale), ¢t — E[M,] is growing (resp. is decreas-
ing).

Example 3.1. Let B = (B;,t > 0) be a (F;)-brownian
motion, then the following processes are martingales

(i) (Bi,t=0);
i) (B2 —1,t>0);
t
(iii) ("B %t with 6 € R.

Remark. If (M, t > 0) is a martingale and f : R — R convex
s.t. E[|f(My)]] < oo, then (f(My),t > 0) is a submartingale.

Theorem 3.6 (Maximal inequality). Let (My,t > 0) be a
submartingale right continuous, then

Pq sup My > A <
s€[0,t]

forall X >0,t>0.

E[|M:]]

A )
Theorem 3.7 (Doob’s inequality). Let (Mi,t > 0) be a

right continuous martingale and p > 1 € R. Then

sup | M|
s€0,t]

< gl Mllp

for allt >0, where%—f—%: 1.

And consequently

sup | M|
s>0

< gsup || M|,
p s>0

3.4 Convergence and optimal stopping the-
orem

Theorem 3.8. Let (M;,t > 0) be right continuous sub-
martingale s.t. sup;>qE[M;] < oo (one can show that a
equivalent is sup;sq E[|M¢|] < oo) then,

My := lim M; exists a.s.
t—o00

and E[|M|] < oo.

Proof. We define D C R, a countable dense space. With
a < b € R, Ng(0,t] N D) is the number of grows of
(Mg, s € [0,t] N D) along [a,b]. We have

E[(M; —a)"]

b—a
sup,>o E[(M,)" + |af]
- b—a

E[Na([0,t] N D)] <

< o0

Then with ¢ — co we have for all a < b, Nyp(D) < o0 a.s.
and so limtﬁ]%o M, exists.
te
Then with Fatou we verify that this limit is not +o0, and

finally as D is dense we have the result on Ry by writing
the definition of the limit. O

Corollary. Let (M, t > 0) be a positive right continuous

spermartingale, then M, ta—s> My and E[My] < E[M] <
— 00

00.



Theorem 3.9. Let p > 1 be a real number and (M;,t > 0) a
right continuous martingale s.t. sup,sq E[|M;|P] < oo, then

LY a.s.
M, —%% M.

t—o0
Proof. O

Theorem 3.10. Let (My,t > 0) be a right continuous sub-
martingale uniformly integrable (UI), then

. Lt
(i) M, H—OO> Mo 5
(i) M, H—DO> Moo |
(iii) ¥t > 0, My < E[Muo|F:] a.s.

Theorem 3.11 (Optimal stopping theorem). Let (M, ¢t >
0) be a right continuous submartingale and S < T stopping
times. If (a) (My,t > 0) Ul or (b) S < T bounded (3C < 00
s.t. T(w) < C, for allw € Q) then

MS < E[Mtl}—s’] a.s.

And consequently E[Mg] < E[M,].

Example 3.2. (M;,t > 0) aright continuous submartingale
and S < T, bounded stopping times. Then E[Mr|Fs] >
Mgar a.s.

Indeed,

E[Mr|Fs] E[Mr1{s<ry|Fs] + E[Mr1lssry|Fs]

= E[Mrvslis<ry|Fs] + E[Mraslissry|Fs]

= lys<ry E[M7ys|Fs] +1(s>1) E[Mras|Fs]
— —

>Ms =Msnr

> Mgsar.

Example 3.3. (M, t > 0) aright continuous submartingale
and T stopping time, then (Mpas,t > 0) a right continuous
submartingale.

Indeed for all ¢t > 0, Mpay is (Frag)-measurable so
(Fi)-measurable. And for all ¢ > s > 0, E[Mpa|Fs] >

M(T/\t)/\s = Mrps-

3.5 Example: Brownian motion

Example 3.4. Let T, := inf{t > 0 : B; = a}. We know
2
that (M, = Bt ¢ > 0) is a martingale. For a > 0,
(Mt at,t > 0) continuous bounded martingale, so UL And
so E[Mr,] = E[My] = 1 with the optimal stopping theorem.
2
On the other hand E[Mz,] = E[e?*~=T:] and then with

02
Ai=2

E[e—ATa] 6_\/”‘“2.

Example 3.5. Let (X;,Y;) be Brownian motion in R? with
Xo =0 and Y7 = 1. We are looking for the distribution of
Xp with T :=inf{t > 0:Y; = 0}.

Let a € R,
E [eiaXT] —_

= e s

i.e. X7 has a standard Cauchy distribution.

4 Continuous semimartingales

4.1 Finite variation processes

Let » > 0 fixed and a : [0,7] — R a finite variation con-
tinuous function with a(0) = 0. It is variation finite if
a = ¢4 —c_ where ¢y : [0,7] = R growing functions.
We can assume that ¢y are continuous and ¢4 (0) = 0.
Let p+ be Stieltjes measures associated to c4, so

pe([0,8]) = cx(t),
for all t € [0, 7].

Theorem 4.1 (Stieltjes). Let F': R — R growing and right
continuous function, then there exists a unique measure p
on R s.t.

p(la, b)) = F(b) - F(a),
foralla <beR.
We can write
Hooi= e —

where p1 are signed measures on [0,7]. Actually this de-
composition is unique and exists if u4 are orthogonal, i.e.
for all A measurable p( (A) = pu_(A®) = 0.

We can also write

lul = py+p-,

the total variation measure associated to the function a.
And we have py < |u| (ie. VA st. |u/(A) = 0 =
p+(A) = 0).

Proposition 4.2. With the subdivisions 0 =: tg < --- <
ty =,

lul([0,7]) = SEPZM(E)—G(E—QL

Proof. O

We still have a : [0,7] — R a finite variation continuous
function with a(0) = 0, and f : [0,7] — R measurable s.t.
f[o ;1 [fld|p] < oo. Then we define

/0 ' () das) / ' F(s) u(ds)

[ s = [ o)) ek,
0 0



for all ¢ € [0,7]. And also 4.2 Continuous local martingales
We note with X := (X;, ¢ > 0), T a stopping time,

t t
| r@an = [ el XT o (X, £30)
_ /0 £(s) u+(ds)—|—/0 F(s) p_(ds) €R Definition 4.1 (Local martingale (continuous)). We call

"M = (M, t > 0) a local martingale if there exists
(T,,,n > 1) growing sequence of stopping time s.t. T, 1 co
We have the triangular inequality a.s. and that for all n > 1, MT» — M, is a continuous
. . martingale UL
/ f(s)da(s)| < / |f(s)||da(s)]. But be careful we don’t know anything about M;, espe-
0 0

cially Vt, E[|M;|] < co.
We say that (7),) reduces M.

Remark. e M if a continuous martingale = M is a local
continuous martingale (just take T, := n).

Lemma 4.3. Let f : [0,r] — R be continuous and a se-
quence of subdivisons of [0,7]: 0 =:tf < --- <ty =1 from
which the interval goes to 0. Then

e In the definition we can suppose that for all n, M —

o My is a bounded martingale.

t
| odats) = i () (o) - alery)).
0 i=1 e )M is a local continuous martingale, T' stopping time,
= M7 local martingale.
Proof. We define for all n, f,,(s) := >0" ) f(t5 ) pn | 4n1(s),

1—1°"4

e (T,) reduces M, (S,) a stopping time 1 oo a.s. =

S0
(T, A'Sy,) reduces M.

P -

Z FE ) (a(tf) . a(t?_l)) _ / Fu(s) da(s) o A lin?ar combination of two local martingale is a local

Pt 0 martingale.

" F(s)da(s), Proposition 4.5. We have the following properties
n—oo 0 (i) M local positive continuous martingale, E[My] < oo
. . = M supermartingale.

with dominated convergence. O

(i) M local continuous martingale s.t. vt > 0,

Now we can enlarge this result on R. a : Ry — R is a E[Supse[(%ﬂ |Ms|} < 0o = M martingale.

finite variation on R+ (ze if for all r > 0, a is a finite vari- (ZZZ) M local continuous martingale s.t. E[SUPtE[O,t] |Mf|] <

ation function on [0,7]) continuous function with a(0) = 0. 00 = M martingale UL
Let f :TR+ Hd R measura;f st [y [f(s)]lda(s)| = Proof. Let (T,) reduce M.
supr>g Jo |f(s)llda(s)] < co. Then (i). Vn, M™ — My a martingale UL. We have M, is
. . Fo-measurable so M7 is a martingale UL. And so for all
/ f(s)da(s) = lim f(s)da(s). t>s52>0,
0 =00 0
A = U
Let us now define a filtered space (2, F, (F3),P), with N, N

the filtration (F%) that is right continuous and complete.
So by Fatou’s Lemma,

Proposition 4.4. Let (V;, t > 0) be a continuous E[M|F,] < liminf E[My, p|Fs] = M.
and adapted process, with finite variations and Vo = 0. n—oo
And (Hy, t > 0) a progressive process, s.t. ¥t > 0, (ihvt > s > 0, VA € F,, E[Mp nla]l =
fot |Hs(w)]|dVs(w)| < oo a.s. Then, E[Mz, rsla]. And Mp, A+ — My, so by dominated conver-
gence E[Mp, at14] — E[M;14]. We have the same for the
t right hand side in the equality. So for all A € Fy,
(/ H,dVs, t> O>
0 E[M:14] = E[M14]

is a continuous, adapted process, null in 0 and with finite = E(M|Fs] = E[M|F] = M,.

variations. ]

1Recall that if a is at finite variation then

lul([0,r]) = Sgp|a(ti)—a(ti+1)|-



Theorem 4.6. Let M be a local continuous martingale,
My =0 a.s. If M is at finite variation®, then

P{M, =0, V¢ > 0} 1.

Proof.

4.3 Quadratic variation

Theorem 4.7. Let M be a local continuous martingale,
then

(i) There exists a unique’* continuous adapted growing
process, null in 0, that we note (M) = ((M), t > 0)
s.t. (MZ — (M), t>0) is a local continuous martin-
gale.

(i) For allt >0, for all 0 =:t§ < ... <ty =1 sequence
of subdivision of [0,t] where the intervals go to 0,

Pn

S (M — My )2 —— (M)

; n—o00
i=1

Proof. (Unicity). Assume that X and Y satisfy the condi-
tions of (M), then M? — X, M? — Y are local martingales
= X —Y, is a local martingale with finite variation, null in
0, and with Theorem 4.6, P{X; —Y¥; =0, t > 0} = 1. O

We call (M) the quadratic variation of M.

Example 4.1. Let B be a (F;)-brownian motion, then
(B); = t, consequence of the Levy theorem, or the fact that
(B? —t, t > 0) is a martingale.

Proposition 4.8. Let M be a local continuous martingale
and T a stopping time, then

(MT) = ()T

Proof. We have by definition (M7)% — (M) which is a local
martingale, so let us just show that (M7)2 — (M)7 is also
a local martingale and the proof is made. For ¢ > 0,

T
t

(M) = (M){ = Mip, — (M)rpe,

which is a local martingale. O

Theorem 4.9. Let M be a local continuous martingale,
MO = O;

(i) E[(M):] < o0, ¥t > 0 & M is square-integrable. In
this case (M} — (M), t > 0) is a martingale null in
0.

(i) E[(M)oo] < o0 & M is a martingale s.t.

sup;>o E[M?] < 0o (®). In this case (MZ—(M)¢, t > 0)
is a UI martingale null in 0.

2In the sense that if (X¢) and (Y;) follow this property then ]P’{Xt
3With the Doob inequality it is equivalent to have E[supt>0 M2 <
4Finite variation.

5The process (X¢, t > 0) is measurable if it is progressive.

Proof. O

Corollary. Let M be a local continuous martingale, My = 0
a.s. Then,

P{(M); =0, ¥t >0} =1 < P{M,=0, Vt>0}=1

Proof. “<" is trivial. For the other implication, assume that
(M) = 0 a.s. then with (ii) of Theorem (4.9), M? is a Ul
martingale, and E[M?] = E[MZ] = 0. O

Definition 4.2. Let M, N be local continuous martingale,

(M, N) (M +N)¢ = (M = N)y)

((M + N) — (M) — (N)y)

N = ]

And in particular, (M, M) = (M).

(i) (M,N) is the unique continuous
(M, N)

Proposition 4.10.
adapted process at f.v.*, null in 0, s.t. MN —
is a local martingale.

(ii) (M,N) —

tion.

(M,N) is a symmetrical bi-linear applica-

(i4) For allt >0, 0 =:t5 < --- <ty , where the intervals

go to 0,
P .
> (Mt? - Mtzal) (Ntrf - Nm) — = (M, N).
i=1
(iv) Let T be a stopping time, (M,N)T = (MT N) =

(M, NT) = (MT,NT),

Proof. If we use the property of polarisation, i.e. ab =

% ((a +0)? — (a— b)z), we already proved everything. [

Remark. Let M, N be continuous martingales null in 0 s.t.
E[(M)s] < 00, E[(N)so] < 00, then MN — (M, N) is a Ul

martingale.

Definition 4.3 (Orthogonality). Two martingales are said
to be orthogonal if (M, N) =0, i.e. M N is a local martin-
gale.

Theorem 4.11 (Kunita-Watanabe inequality). Let M, N
be two continuous local martingales, and H K two measur-
able processes (Ry x Q,B(Ry) @ F) — ) (°), then

AL AREISYN

W H2 (M W K2d(N

Y;, ¥t >0} = 1.
Q.

10



Proof. In this proof we will use the notation (M, N){
(M,N); — (M,N);, s <t. Then with the Cauchy-Schwarz
inequality we have (with theorem 4.7 and proposition 4.10
(iii)) for all s < t,

(M, N)] VAM)EVINDG
a.s. Then (4.1) hold a.s. for all s < t € Q, and with the

continuity Vs < t € R. We will now fix w € Q s.t.
true.
Let us define s =: g < - -~

P p
Z‘MN“ < Z\/
=1

(4.1) is

< tp :=1 a subdivision,

RVYCE

P
< ()i,
1

= 1 i=

= VIML(NYE

6

By taking the supremum® on all the subdivisions of [s, t],

/[ SN < VOTTNTE
() 0

4.4 Continuous semimartingale

Definition 4.4 (Semimartingale). A process (X, ¢ > 0) is
a continuous semimartingale if it can written as

Xy = Xo+ My + V4,

where M is a local continuous martingale, V' is a continuous
adapted v.f. process, and My = V5 =0 a.s.

Remark. We call this decomposition the (unique) canonical
decomposition of X.

Definition 4.5. Let Xt = XQ +Mt +‘/t7 )/t = YO +Nt +Wt

be two continuous semimartingales. We set

(X,Y): = (M,N);.

In particular (X); = (M),.

Proposition 4.12. Let X,Y be two continuous semi-
martingales, and 0 =: t§ < --- <t} a sequence of sub-
division where the intervals go to 0 as n — oo, then

Pn
P
Xin — Xiyn Yin — Yin s
i i—1 i i—1 00
=1
SRecall that

(X,Y):.

supZI(I(t)—a(tz )l =

ti

11

Proof. By polarisation we can prove the result with X =Y.
Indeed,

Pn

2
Z(Xt? _Xt;”,L—l) = I’ﬂ + JTL + Kn7
with,
2
L, = Yo (Mtn — My 1)
2
J’n, == (Mtn — Mt? 1)
Ko = 22@ (Mt? - Mt:;l) (Vt? - Vti",1>-
we already have I, % (M); = (X);. And
p’ﬂ
[l < max|Vie = Viu |3 |Vir = Vi
asyo '
<Jg 1dVs|<oo
a.s. 0.
Same kind of proof for K. O

5 Stochastic integral
5.1

We will first recall some concepts:

Integration for bounded integral in L?

e Associativity: let a : Ry — R continus and variation
finite, fR, — R measurable Vf, fg|f (s)[|da(s)| <

= fo ) variation fi-
Then for all g: R+ — R measure S.t.
s)IIf(s)l|da(s)| < oo, ¥t >0

t
[ atsans) =
0
e Integral stopping: V1 > 0, Vt > 0,
TAt t
| s = [ ) datsn)
0 0

_ / £(5)Lory(s) das).

e Change of variable: A, a : Ry — R continuous, grow-
ing, A(0) = «(0) = 0. Then for all f: Ry — Ry
measure, Vi,

/ ' fla(s) dA(o
/M \dal.

oo. We also have b(t
nite over R+

vt >0, f0|g

/ 9(5)£(s) da(s).
0

a(t)
(5) = / £(u) dA(u).



We know define the filtered space (2, F, (F1),P). We use
the notation

H? = {M : cont. mart., sup E[M?] < oo, My = 0}
>0

Remark. Tt is equivalent to { M local martingale, E[(M )] <
oo, My =0} and M? — (M) martingale UL

We observe that for T stopping time, M € H? =
MT ¢ H2. And for all M, N € H?,

vl < [T aanm
<w) \/ /Omd<M>s\/ | aw.
= V(M) (N)w,
hence,
B[, N)ucl] <9 /E(M oV E[(Nh] < 0.

We will note (M, N)gz := E[(M, N)] € R. We see that
(M,N)gz2 =0 = M = 0. Actually (M, N)g2 is a scalar
product on H2. With the optimal stopping theorem we have
(M, N)gz = E[Ms Ns), and

IMIE = (M, M)y

E[(M)s] = E[MZ].
Proposition 5.1. (H?, (-, )y2) is an Hilbert space.
Proof. O

Now let us note, for all M € H?,

L*(M) = {H prog. proc. / E UOOO H§d<M>S] < oo}
= L*R; x Q,P,dPd(M),).

Let H, K € L?>(M), we define
(o)
(H, K)oy = E U HSKSd<M>S] .
0

Theorem 5.2. Let M € H?, VH € L*(M), 3'H - M € H?
s.t.

(H-M,N) = H-(M,N) ,

———
= (fy Hs d(M,N);,t>0)

for all N € H2.
The application

L*(M) — H?
H — H-M

is an isometry (linear that preserves the norm).

We call H-M = ((H-M)t = [ H, dMs,tZO> the

stochastic integral (or Itd’s integral).

Proof. O

Proposition 5.3 (Associativity). Let M € H?, K €
L2(M), we can then define H € L*(K - M). Then HK €
L3(M), we can define HK - M € L*(M), and

HK-M = H-(K-M).
Proof. O
Remark. Then we can write
(i)
t t
/ H (K;dM,) = / H,K,dM,.
0 0

(ii) VM, N € H2, VH € L*(M), VK € L*(N),

. t
</ HSdMS,N> / H,d(M,N), ;
0 t 0
. . t
</ HSdMS,/ stNS> = /Hsst<M,N>S;
0 0 t 0
. t
</ HSdMS> = /Hfd(M)s.
0 t 0

Proposition 5.4. Let M € H?, H € L*(M) and T stopping
time, then

H-MT
Hlpp - M.

()T =

Proof. O

5.2 Integration for continuous semimartin-
gales

Let M be a continuous local martingale, we define

L} (M) = {H prog. proc. / E [/OOO H? d<M>S] < oo}.

Theorem 5.5. Let M be a continuous local martingale,
H e L} (M). Then

loc

(i) ' H - M continuous local martingale, null in zero s.t.
(H-M,N) = H-(M,N),

for all N local martingale.

(ii) With T stopping time, H-MT = (H-M)T = Hljo1)-
M.

(iii) If M € H?, H € L*(M), then H-M s the It6’s integral
defined in the last section.

Proof. O

12



Remark. With M continuous local martingale, H € L%OC(M) Proposition 5.7. Let X a continuous semimartingale and

and T stopping time, H a continuous adapted process, then ¥t > 0, VO =: tf <
" ...ty =1t where the interval goes to zero with n — oo,
(i) if E {fo H? d<M>S] < o0, then 1
t Pn—
P
. /O H,dX, £ lim Z Hy (X% - Xt?).

E / H,dM, = 0; i=0

0 Proof. O

2
r T 9 Remark. We have to be careful, it’s wrong to replace Hi»
E o H,dM, = E 0 Hd{M)s| by Ht?+1 or any other value in ]th,Ht;H] in the equality.

Proposition 5.8 (Integration by parts). Let X,Y contin-
uous semimartingales, then

S

¢ t
(fot H,dM,t > O) is a continuous martingale square XtY: = XoYo + / X, dY, + / YidXs + (X, V)
0 0

integrable, null in zero, s.t. V¢ > 0,

t
E {/ H, dMS}
. 0 9 . Remark. With M local continuous martingale,
E (/ Hdes> = EU Hfd(M)s} ) ) t
0 0o My = Mj + 2/ MdMs + (M);.
0

We say that H is a process that is locally bounded if for

Gi) if ¥ > o0, E{fOTH2d<M>S] < oo, then

for allt > 0.
Proof. O

0;

6 Itd’s formula and applications

all ¢,

sup |Hy| < oo as. 6.1 Itd’s formula

selo Theorem 6.1 (Ito’s formula). (i) (Unidimensional) Let
Definition 5.1. Let X = Xy+M +V be a continuous semi- X be a continuous semimartingale, f : R — R in C?,
martingale, and H a progressive process locally bounded, then
then we define L,

) = fx0) + [ Fax.
H-X = H-M + H-V. )

+ %/0 FH(XS) d(X)s.

Remark. Here H - M is a local continuous martingale, null
in 0. And H -V is an adapted continuous process, with finite

variations. null in 0 (ii) (Multidimensional) Let X' ..., XN be continuous
) .

semimartingales, F : RN — R in C2,

Proposition 5.6. Here are few properties that we already N

saw. Let H, K progressive processes locally bounded, and X F(X,) = F(Xo) + Z/ oF (X,)dX
i=170

continuous semimartingale. Ox;
(i) H-(K-X)= HEK - X e [t 2F
17 . . — . . . .
- X,) d(XT, X9),.
X | g (A X0,
(ii) Let T be a stopping time, then (H - X)T = H - X7 = i=1j=1
Hlyr - X. Proof. O
(iii) If X is a continuous local martingale (or process with Remark. (i) In the case F(x,y) := zy we found the for-
finite variations), then it is the same for H - X. mula of the integration by parts.
(iv) (H,X)— H - X is bilinear. (ii) The Ito’s formula is still true if (X3, ¢ > 0) with value
in D C RY an open set (and convex), and if F': D — R
(v) Let H progressive s.t. Hq(w) = (Z):f’;ol H®) (W), 1000(8), in C2.
where 0 =:tg < --- < tp, Vi H" is (Fy,)-measurable, (iii) If X!,..., X* are continuous, adapted and with finite
then variations, the formula is still true if
p—1 4 k N—k
(H-X)e = D HI(Xpn = Xen): Fech12,..2

=0

13



(iv) The differential version is

1
df(Xe) = f(X)dX; + if”(Xt) d(X):
Example 6.1  (Multidimensional brownian  mo-
tion). We will note n > 1 the dimension,
(B = (Bt(l), ... ,Bg")> ,t > 0) a (F¢)-brownian motion in

R™ (hence BM, ...,
tions).
Let us first see the case n =1, f : R — R in C?,

/f dB+/f”

Now we take F : Ry x R — R € C12, hence

t/OF  102F
F(t,B)) = F(0,0) + /0 <85+28$2

oF

+/Oax

B are independant F;-brownian mo-
f(B) =

) (s, By)ds

(s, B) dB,.

So if %1; %%af; = 0 we have (F'(t, B;), t > 0) is a local mar-
tingale’. It is the case for Fy(t,z) = x, Fy(t,x) = 22 — ¢,

F3(t,x) = a3 — 3tx, etc. More generally

22 d" _=2
Hy@) = (-1)"e7 — (7))
n x
H,(x,t) = t2H,|— mod. Hermite’s poly.
(@) (%) ¢ poly)

and then Vn, (H,(By,t), t > 0) is a continuous local mar-
tingale. We also have, for all ¢ > 0,

t
E
0

sp we know that Vn, (H,(B,t),t > 0) is a martingale®.
More generally, if B is a (F;)-brownian motion in R™,

F:R" - Rin C?,
Z/ 3%

+7/AF(B
20

6.2 Exponential semimartingale

0H,

B B

2
ds} <

;) dB:

F(By) =

Theorem 6.2. Let X be a continuous semimartingale, then
I Z continuous semimartingale s.t.

t
Z, = X0 +/ZSdXS, t>0.
0

Moreover,
Zp = E(X)y = X3¢0,

7Indeed we know that f -dBs is a local martingale.

Proof. O

Proposition 6.3. Let M be a continuous local martingale,
A e C, then

5()\M)t =

)\2
exp ()\Mt — 2<M>t> 5

t >0, is a continuous local martingale C-valued.

Proof. O

Let L be a continuous local martingale, Ly = 0. Then
E(L); is a positive continuous local martingale, £(L)y = 1.
Hence (L) is a positive supermartingale and with Fa-
tou’s Lemma E[€(L)s] < 1. Now we want to know if
E[6(L)s] =1, i.e.? (L) is a martingale UL

Theorem 6.4. Let L be a continuous local martingale,
Lo =0 a.s., then (i) = (ii) = (iii).

(i) (Novikov) E [e%<L>°C] < 0.

(i1) (Kazamaki) L continuous martingale UI, E {e%LW} <
0.
(i1i) E[E(L)wo] = 1.
Proof. O

6.3 Levy’s characterization of the Brown-
ian motion

We are in a filtered space (Q,F,(F),
(B, ...,

P). Let B =
B™) a Fi-brownian motion R™-valued, then
(B',B7); = tl{—yy

Theorem 6.5 (Levy).
gale, My =0 a.s.,

(i) M continuous local martin-
then

(M), = t,¥t>0 = M isa (F)-brownian

motion.

(ii) MY, ..., M™ continuous local martingales null in 0,
then
(M', M), = tly—jy = M is a (F,)-brownian
motion R™-valued.
Proof. O

8Indeed recall that if fg’ HsdM;s and if Vt > 0, E [fot H? d(M)S] < o0, then (fg’ HsdMs, t > 0) is a martingale square integrable.

9Indeed recall that if M is a continuous positive supermartingale and E[Meo] =

14

E[Mo], then M is a martingale UL



Example 6.2. Let B a (F;)-brownian motion, and

t
By = /sgn(Bs)st t>0,
0

then B is a continuous local martingale, Sy = 0, (8); =
fot sgn?(Bs)ds = t. And with Levy’s Theorem j is a (F)-
brownian motion.

Example 6.3. Let (X,Y) two brownian motions R?-valued,
Xo=Yy,=0. FOI“QER,

Xf =
Y =

X;cos0 — Yisinf ;

X;sinf + Y;cosf, t>0.

Hence X?,Y? are two continuous martingales null in 0 and
(X% = (Y9 =t, (X%, Y?); =0, then (X% Y?) is a brow-
nian motion.

More generally let B a (F;)-brownian motion, 4 € O,,
then (ABy, t > 0) is a brownian motion.

6.4 Dambis—Dubing—Schwarz Theorem

Theorem 6.6 (Dambis-Dubing-Schwarz). Let M be a con-
tinuous local martingale null in 0, then

M, = Bu,, t>0

with B a brownian motion.

Proof. O

Remark. B is not a (F)-brownian motion but a (F;.)-
brownian motion.

Theorem 6.7 (Knight). Let M',... M™ continuous local
martingales, null in 0, (M*, M7) =0 for i # j, then

Vi<i<n, M; = B, t>0,

(B, ...

, B™) is a brownian motion R™-valued.

6.5 Examples: multidimensional brownian
motion

Example 6.4. Let M be a continuous local martingale,
My = 0 a.s., then

(i) P{limy_o0 [M;] = 00} =

(ii) {lim;_yoo M; exists (is finite)} = {(M)w
{SUPQO M, < oo or infy>g My > —oo} a.s.

(ili) {M)s = oo} =
00, liminf; ,oc My = —oo} a.s.

< oo} =

{limsup,_, ., M =

|Proof to be written|

10We have to be careful, My = 1 # 0.

Example 6.5 (Polar points and 2-d brownian motion). Let
(8,7) be a brownian motion R%-valued, By = 70 = 0. We
define M; = e cos V¢, Ny = ePt sin ~v¢. With 1td6 we have

AM, =
AN, =

M;dB; — Nidy ;
NydBy + Mydy,

so M, N are local martingales, and

d(M), = e*Peat;
d(N), = e*Pdt;
d(M,N), = 0.

Then with the Knight’s Theorem!®, (M, — 1,N;) =
B [t €28t ds with B a brownian motion R2-valued. Let us take
0

w € {(M)s}, then lim;_, o, M; and lim;_,~, N; exist and are
finite, hence limy o (M2 4+ N?) = lim;_, o, 2%t exists and is
finite. So we conclude that (M), = oo a.s., [, e?* ds = oo
a.s. So we can write (M, Ny) = By, + (1,0), and as
‘(Mt,Nt)l = eﬂ‘ > 07

P{3t >0, By, = (-1,0} = 0
= P{35s>0, B,=(-1,00} =0
=  VaeR?\{0}, P{Is>0, B, =0} =

with rotation and scaling.

Example 6.6 (3-d brownian motion). Let B be a brownian
motion R3-valued, then lim;_, ., |B;| = oo a.s.

To show that we just have to show that Vo € R?\ {0},
limy o0 |By + 2| = o0 a.s. We define Z; = |B; + z|? =
S (Bi+ :ci)2, and with It6’s formula,

3 3
Az, = Z (Bf +x;)dB;] + ZZdt
=1 =1
3 . .
= 2) (Bj+x;)dB] + 3dt.
i=1
We define f : RY — R, v+ —= fEC,andYt::f(Z,g)7
with Ito,
IR 13 ("1
Y;:YO_f/ists"_**/ 5d<Z>S
2Jo 73 24 )y 53
t ¢
1 s
:[locmart]—§ —d —|—§/22 = d
2 Jo 72 8 Jo zZ2
= [loc. mart.].
So Y is a positive local martingale and E[Yy] = < %9
hence Y is a positive supermartingale, lim; ., Y; = & > 0
a.s.  So limyoo |By + 2| = % a.s., and we know that
limsup, , |B: + x| = oo a.s., then lim; o |By + 2| = o0
a.s.



Example 6.7. Let B be a brownian motion R"-valued,
n > 2, with By = # € R"\ {0}. We set Z; := |By|?
hence,

23 BjdB] + ndt.

i=1

Now with f: R% — R e C?Y; := f(Z),

4z,

dY; (Z)dzy + %f”(Zﬂd(Z)t

1
[loc. mart.] + nf'(Z;)dt + if”(Zt) X 47, dt.

So if f'(y) + 2yf"(y) = 0, Vy € R%, then Y is a local
martingale. The following functions have this last property:

f(y)
f(y)

Now we use the notation T, := inf{t > 0:|B;| = a}, a > 0.
And define 0 < r < |z| < R, then (Yiarpar,, t > 0) is
a continuous bounded local martingale, so a martingale UI.
With the optimal stopping theorem we have E [f(Z1, a1, )] =
f(|z|?). With n =2,

1
ilny, forn=2, y>0;

n
1—2
3

Y forn >3, y > 0.

E[ln|Bruar.|] = In|z|
&  E[(InR)lir,<ny] + E[(Inr)lir,<ryy] = Infz|
& (nR)P{Tr < T,} + (Inr)P{T, <Tr} = In|z|
InR—In|z|
P{T, T = —
< {Tr < Tr} InR—1Inr

So with R — oo, P{T}, < oo} = 1.
Now with n >3

E[|Broar, "] = [z

&  RT"P{Tr<T.} + r* "P{T, <Tg} = |z|*™"
‘x|27n _ R27n
e ML -Tr} = o=
n—2
with B — oo, (T, < oo} = (1) < L.

6.6 Burkholder-Davis—Gundy inequality

We are in the filtered space (2, F, (F;),P). And for X pro-
cess, we use the notation

sup |Xsl,
s€[0,t]

Theorem 6.8 (Burkholder-Davis-Gundy). Let p € R%,
then 30 < ¢, < O} < 00 s.t. YM continuous local martin-
gale, My =0 a.s.,

P
2
o0

oE[0D&] < E[ML)] < GE[(nE].

And in particular, VT stopping time,

P
2
T

ot

GE|(M):] < E[(M7)) < GE|(a)

-
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Lemma 6.9. Let B be a (Fy)-brownian motion, T a stop-
ping time, 8 > 1,5 >0, x > 0, then

52
(6 _ 1)2]P{BT = .T} )
52
— >z,
e 1IP’{\/T >}
Lemma 6.10. Let £ >0, n >0, r.v. s.t
P{¢>2x,n<dz} < FP{E2>a},

IN

IP{B; > Bz, VT < 595}

IN

]P’{\/T> Bz, B} < 53:}

Vo, x>0,
then, Vp > 0, Je(p) < oo s.t.

EE7] < cp)EMR].
Proof. (Theorem 6.8) O
Proof. (Lemma 6.9) O
Proof. (Lemma 6.10) O

Example 6.8. Let M be a continuous local martingale,
My =0 a.s.,

E[(M)x] < o0 « E[(ML)?] < o  (BDG)
& M martingale bounded in L2
Example 6.9 (Wald identities). Let B be a (F;)-brownian

motion, T a stopping time,

Br
~—~
= (BT)x

E[\/ﬂ<oo o E <o (BDQ)

= BT martingale UI

= E[Br]|=E[By] =0 (Opt. stopping)

E[T] <o & E[(B7)?’] <co  (BDG)
= BT, ((BI)*—(T'At), t>0) mart. UI
= E[B7-T]=0
= E[B?] =E[T].

6.7 Martingales of a brownian filtration

We are in the complete probability space (2, F,P). Let B
be a brownian motion. And we set (F;) (the usually aug-
mentation of) the canonical filtration of B.

Theorem 6.11. Let (F;) be (the usually augmentation of)
the canonical filtration of B, then for all M continuous local
martingale, there exists a unique constant ¢ and a progres-
sive process (Hy, t > 0) s.t. Vt > 0, fg H2ds < o0 a.s.,
ERA

M,

t
c + / H,dB;.
0

If moreover M s continuous martingale with

sup;> E[M?] < oo then

]E{/ Hfds] < oo.
0

a



6.8 Girsanov theorem

We are in the filtered space (2, F, (F;), P).

Theorem 6.12 (Girsanov). Define (Ly, t > 0) a continu-
ous local martingale, Lo = 0 a.s. Assume that E[E(L)s] =1
(i.e. E(L) is a martingale UI). Let Q be a probability mea-
sure on (Q, Foo) defined by Q := E(L)oo - P (ie. VA € Foo,
Q = E[&(L)ocla]). Then for all M local continuous P-
martingale,

M — (M,L)

18 a local continuous Q-martingale.

Proof. O
Remark. (i) Q < P on Fu, but not the inverse. And we
have Vt > 0, @ ~ P on F;.
(i) If X is a P-semimartingale, it’s also a Q-
semimartingale.

(iii) A result P-a.s. or in probability hold un Q.

(iv) Set B a (F;)-brownian motion under P, then B—(B, L)
is a (F)-brownian motion under Q.

Theorem 6.13 (Girsanov, horizon finite version). For t >
0, let (Ls, s € [0,t]) be a continuous local martingale, Ly = 0

a.s. Assume that E [eLt—é@ﬁ} =1. Let Q on (2, F;) be the
probability measure defined by Q = eLi=2(L)e.P. Then for all
M local P-martingale, the process (My — (M, L), s € [0,1])
s a local Q-martingale.

Example 6.10 (Cameron-Martin). Let h : Ry — R
measurable s.t. Vi, fg h%(s)ds < co. We define L; :=
fot h(s)dBs, t > 0. Then (£(L):, t > 0) is a positive super-
martingale and as E[e2 ()] < oo, Vt > 0, (E(L)s, s € [0,t])
is a martingale UI.

There exists'" a probability Q s.t. Vt, Qr, = E(L)¢P .
With the Girsanov theorem V¢ > 0, (B, — fot h(u)du, s €
[0,¢]) is a Q-brownian motion. Then (Bs—fot h(u) du, s > 0)
is a Q-brownian motion.

In particular let h(t) = v € R, then Q|r, = eYBi=377t .
P 7,. The process (B; —~t, t > 0) is a Q-brownian motion
and then B under Q is a brownian motion with drift ~.
inf{t > 0 : B, = a}, for all

This result is given by the theorem of Kolmogorov.

We are looking at T, :=

]
—_~
3
IN
b
Il

i

Now t — oo,

QT. <t} = E[ 27T 1 )]
——

= e—I7llal

1 if va >0
= eQ'ya

else.
7 Stochastic differential equations

7.1

Definition 7.1 (Stochastic differential equations). Let
d,m > 1, the applications

Strong and weak solutions

o:Ry xR = Mgyn,(R);
b:Ry xR — RY

are measurable and locally bounded. We define the SDE
E(o,b)

dX; = o(t,Xy)dB; + b(t, Xy)dt.
We say that E(o,b) has a solution if there exists:
o (Q, F(F,),P) filtered space,
e B=(B',...,B™) (F;)-brownian motion R™-valued,

e X =(X',..., X% continuous adapted process s.t.

t t
X, = Xo + / o(s, X,)dB, + / b(s, X4 ds.
0 0

In the special case where Xy = 2 € R? we say that
(Q, F(F),P, B, X) is a solution of E;(a,b).

Definition 7.2. (i) The weak existence of E(o,b) means
that for all z € R, there exists a solution for E,(c,b).
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(ii) The weak uniqueness for E(c,b) means that Vo € RY,
all the solutions for F,(c,b) have the same law.

Example 7.1. Let dX; = sgn(X;)dB;. For a fixed z € R,
V(Q2, F(F:),P), B a (Ft)-brownian motion, Sy = z. And we
define

t
By = /Osgn(ﬂs)dﬁs.

Then (B); = fot 1ds =t, and by Levy B is a (F;)-brownian
motion. And then

dB; = sgn(B:)dp:
= dﬂt = sgn(ﬂt) dBt

Example 7.2. Let dX; = dB; + b(¢t,X;)dt. For all
(Q, F(F),P), VX (F;)-brownian motion, let Q be a proba-
bility measure s.t.

t t
Q‘}-t = exp </0 b(sts)dXs - %/O b(saXs)Z dS) . ]P)lft

so with Girsanov, B; = X; — fot b(s, Xs)ds is a (Fy)-
brownian motion under Q. So (2, F(F:),Q, B, X) is a solu-

tion.

Definition 7.3. (i) Strong uniqueness for E(o,b) if two
solution X and X associated to the same filtered space
and the same brownian motion s.t. Xy = X, a.s. are
indistinguishable.

(il) We fix (Q, F(F:),P) and B (F;)-brownian motion. We
say that X is a strong solution for F(o,b) if X is
adapted according to the canonical filtration of B.

Example 7.3. We retake the SDE dX; = sgn(X;)dB;.
There is no strong uniqueness, indeed if X is solution with
Xy =0, then —X is also solution.

Example 7.4. Consider the SDE
dXt == )\Xt dBt 3

with A € R. We know from Theorem 6.2 that there
is strong uniqueness and for all x the solution is X; =
T exp ()\Bt — %Azt).

Theorem 7.1 (Yamada—Watanabe). If there is weak exis-
tence and strong uniqueness then there is weak uniqueness.
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