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1 Introduction

This introduction deliberately is incomplete from a math-
ematical point of vue. Its aim is just to introduce some
notions on stochastic calculus without being rigorous at all.

1.1 Brownian motion

Let us consider a set of r.v. in R, Xt is the value at time t.
Between the times t and t+ h with h > 0,

∆Xh
t := Xt+h − Xt (1.1)

= Ht ε
h
t . (1.2)

This is the fundamental hypothesis, when h is small ∆Xh
t is

the product of Ht which is a continuous function observable
at time t, and εht r.v. independent from all that happen
until t and s.t. its law only depends on h.

Remark. This assumption is quite natural if Xt is determin-
istic then with Ht is its derivative and εht = h ; and you find
the Taylor expansion.

Let’s take h = h1 + h2 with h1, h2 > 0, then

Xt+h = Xt+h1
+ Ht+h1

εh2

t+h1
(1.3)

= Xt + Htε
h1
t + Ht+h1ε

h2

t+h1︸ ︷︷ ︸
Htεht

. (1.4)

And with h1 < h very small by continuity we have Ht+h1 ≈
Ht, so we deduce

εht ≈ εh1
t + εh2

t+h1
. (1.5)

By iterating,

εht ≈ ε
h
n
t + ε

h
n

t+ h
n

+ · · ·+ ε
h
n

t+
(n−1)h
n

, (1.6)

so εht is the sum of n r.v. of same law, by the central limit
εht follows a normal law. We note mh its mean and σ2

h its
variance. With (1.5) we deduce{

mh1+h2 = mh1 + mh2

σ2
h1+h2

= σ2
h1

+ σ2
h2

(1.7)

⇔
{
mh = bh
σ2
h = σ2h

, b ∈ R, σ ≥ 0 (1.8)

⇔ εht = bh + σ(Bt+h −Bt). (1.9)

where (Bt, t ≥ 0) is a brownian motion.

Definition 1.1 (Brownian motion). Continuous set of r.v.
where each r.v. is gaussian, s.t. Bt ∼ N (0, t) and Bt+h−Bt
is independent from (Bs, s ∈ [0, t]).

We then have with this definition,

Xt+h = Xt + Ht(bh+ σ(Bt+h −Bt)). (1.10)

If σ = 0, we simply have the differential equation dXt
dt = bHt,

i.e.

Xt = X0 +

∫ t

0

bHs ds. (1.11)

Else if σ > 0,

Xt = X0 +

∫ t

0

bHs ds +

∫ t

0

σHs dBs︸ ︷︷ ︸
stochastic integral

. (1.12)

1.2 Stochastic integral
Here (Ht, t ≥ 0) is a continuous process, we also assume
that for all t, Ht is observable. And it is very important
that (Bt+h −Bt, h > 0) and (Hs, Bs, s ∈ [0, t]) are indepen-
dent.

We now want to give a sense to the stochastic integral∫ t
0
Hs dBs. Let us begin with the simple case where the

function t 7→ Ht is a floor function, i.e.

Ht :=

n∑
i=1

Hti1[ti,ti+1[(t).

We then define its stochastic integral,∫ t

0

Hs dBs ,
n∑
i=1

Hti(Bti+1∧t −Bti∧t). (1.13)

Lemma 1.1. Let ξi and ηi, i ∈ J1, nK, square integrable
r.v. s.t. for all i, E[ηi] = 0 and ηi is independent from
(ξj , ηk, j ∈ J1, iK, k ∈ J1, iK). Then,

(i) E [
∑n
i=1 ξiηi] = 0 ;

(ii) E
[
(
∑n
i=1 ξiηi)

2
]

=
∑n
i=1 E[ξ2

i ]E[η2
i ].

Proof. For (i).

E

[
n∑
i=1

ξiηi

]
=

n∑
i=1

E [ξiηi] , (linearity)

=

n∑
i=1

E[ξi]E[ηi]︸︷︷︸
=0

, ξi ⊥⊥ ηi

For (ii).

E

( n∑
i=1

ξiηi

)2
 = E

 n∑
i=1

(ξiηi)
2 + 2

∑
1≤i<j≤n

ξiξjηiηj


=

n∑
i=1

E[ξ2
i ]E[η2

i ]

+ 2
∑

1≤i<j≤n

E[ξiξjηi]E[ηj ]︸ ︷︷ ︸
=0

.
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Lemma 1.2. Let (Ht, t ≥ 0) be a constant piecewise pro-
cess. If E[H2

s ] <∞, then for all t ≥ 0,

(i) E
[∫ t

0
Hs dBs

]
= 0 ;

(ii) E
[(∫ t

0
Hs dBs

)2
]

= E
[∫ t

0
H2
s ds

]
.

Proof. Write the integral with the definition (1.13) then take
ξi := Hti and ηi := Bti+1∧t −Bti∧t from Lemma 1.1.

We can then extend the stochastic integral to other pro-
cess as each process can be written as the limit of constant
piecewise processes.

1.3 Girsanov theorem

Proposition 1.3. Let r > 0 and f ∈ L2([0, r],ds), then for
all t ∈ [0, r],

∫ t
0
f(s) dBs ∼ N

(
0,
∫ t

0
f2(s) ds

)
.

Proof. ∃(fn), fn :=
∑pn−1
i=0 αni 1[tni+1,t

n
i [ and fn → f in

L2([0, r],ds). We saw that
∫ t

0
fn(s) dBs →

∫ t
0
f(s) dBs

in L2(Ω). And
∫ t

0
fn(s) dBs =

∑pn
i=1 α

n
i (Btni+1∧t − Btni ∧t)

follows the normal law N
(

0,
∫ t

0
fn(s)2 ds

)
.

Let us note

Z := exp

(∫ r

0

f(s) dBs −
1

2

∫ r

0

f(s)2 ds

)
.

And let us define the probability Q on (Ω,F) by,

Q = E[Z1A] =

∫
Ω

1AZ dP , A ∈ F .

Then for all r.v. X,

EQ[X] =

∫
Ω

X dQ =

∫
Ω

XZ dP = E[XZ].

Theorem 1.4 (Girsanov’s theorem). The process defined
by

B̃t := Bt −
∫ t

0

f(s) ds,

is a brownian motion on Q.

1.4 Itô’s formula

Theorem 1.5. Let t > 0 and 0 =: tn0 < · · · <
tnpn := t a set of subdivisions of [0, t] where the interval
limn→∞max0≤i≤pn−1

(
tni+1 − tni

)
= 0. Then,

pn−1∑
i=0

(
Btni+1

−Btni
)2 L2

−−−−→
n→∞

t

Proof. We just have to see that for all f : R → R bounded
measurable function,

Σn :=

pn−1∑
i=0

f
(
Bnti
)((

Btni+1
−Btni

)2

−
(
tni+1 − tni

)) L2

−−→ 0

We will use the Lemma 1.1 with ξi := f
(
Btni

)
and ηi :=

(Btni+1
−Btni )2 − (tni+1 − tni ).

E
[
Σ2
n

]
=

pn−1∑
i=0

E
[
f2(Btni )

]
E
[
η2
i

]
,

and ηi has the same law as (tni+1 − tni )(B2
1 − 1) and

E[(B2
1 − 1)2] = 2 as (B2

1 − 1) ∼ χ2(1). We then note
c := supx∈R 2f2(x) <∞,

E
[
Σ2
n

]
≤ c

pn−1∑
i=0

(
tni+1 − tni

)2
≤ c max

0≤k≤pn−1

(
tnk+1 − tnk

) pn−1∑
i=0

(
tni+1 − tni

)
≤ c t max

0≤k≤pn−1

(
tnk+1 − tnk

)
−−−−→
n→∞

0

Theorem 1.6 (Itô’s formula). If f : R→ R is in C2 then,

f(Bt) = f(B0) +

∫ t

0

f ′(Bs) dBs +
1

2

∫ t

0

f ′′(Bs) ds.

Theorem 1.7 (Itô’s formula). If f : R+×R→ R is in C1,2

then,

f(t, Bt) = f(0, B0) +

∫ t

0

∂f

∂t
(s,Bs) ds

+

∫ t

0

∂f

∂x
(s,Bs) dBs +

1

2

∫ t

0

∂2f

∂x2
(s,Bs) ds.

2 Brownian motion

2.1 Definition and first properties
We work in the probability space (Ω,F ,P) that is complete,
i.e. that F contains all the P-negligible sets. We call random
processes all sets of random variables.

Definition 2.1 (Brownian motion). (Bt, t ≥ 0) is a Brow-
nian motion (real and null in 0) if:

(i) t 7→ Bt (the path) is a.s. continuous on R+.

(ii) B0 = 0 a.s.

(iii) ∀n ≥ 2, ∀0 ≤ t1 ≤ · · · ≤ tn, Btn − Btn−1 , . . . , Bt2 −
Bt1 , Bt1 are independant.

(iv) ∀t ≥ s ≥ 0, Bt −Bs ∼ N (0, t− s).

Remark. The Brownian motion is a process with indepen-
dent increase (iii) and stationary (iv), i.e. it is a Levy pro-
cess.
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Definition 2.2 (Gaussian process). (Xt, t ∈ T) is a Gaus-
sian process if for all n ≥ 1 and for all (t1, . . . , tn) ∈ Tn,
(Xtn , . . . , Xtn) is a Gaussian vector.

Proposition 2.1. (Xt, t ≥ 0) is a brownian motion iff a.s.
t 7→ Xt is continuous on R+ and (xt, t ≥ 0) is a centred
gaussian process of covariance Cov(Xt, Xs) = t∧s, ∀s, t ≥ 0.

Proof. “⇒”. For all 0 ≤ t1 ≤ · · · ≤ tn, Xtn −
Xtn−1

, . . . , Xt2−Xt1 , Xt1 are Gaussian and independant r.v.
so (Xtn − Xtn−1 , . . . , Xt2 − Xt1 , Xt1) is a Gaussian vector,
so (X1, . . . , Xn) is a centred Gaussian vector.
For all t ≥ s ≥ 0,

Cov(Xt, Xs) , E[XtXs] − E[Xt]E[Xs]︸ ︷︷ ︸
=0

= E[(Xt −Xs)]E[Xs]︸ ︷︷ ︸
=0

+ E[X2
s ]

= E[(Xs −X0)2] = Var[Xs −X0] = s− 0.

“⇐”. (ii). Var[X0] = E[X2
0 ] = 0 and E[X0] = 0.

(iii). ∀0 ≤ t1 ≤ · · · ≤ tn, (Xt1 , . . . , Xtn) is a gaussian vector,
so (Xt1 , Xt2 −Xt1 , . . . , Xtn −Xtn−1) is also a Gaussian vec-
tor. To show the independence we just have to show that
the covariance is null. For all 1 ≤ i < j ≤ n,

C := Cov(Xti −Xti−1
, Xtj −Xtj−1

)

= Cov(Xti −Xtj ) − Cov(Xti−1
−Xtj

− Cov(Xti −Xtj−1
+ Cov(Xti−1

−Xtj−1

= ti − ti−1 − ti + ti−1 = 0.

(iv). For all t ≥ s ≥ 0, Xt −Xs is a centred Gaussian r.v.
and,

Var[Xt −Xs] = Var[Xt] + Var[Xs]− 2Cov[Xt, Xs]

= t+ s− 2s = t− s.

Theorem 2.2 (Wiener). The brownian motion exists.

Proof.

Proposition 2.3. If Bt is a Brownian motion, then the
following processes are also:

(i) Xt = −Bt.

(ii) Xt = 1
tB 1

t
.

(iii) a > 0, Xt = 1√
a
Bat.

(iv) s ≥ 0, Xt = Bt+s −Bs.

(v) r > 0, Xt = Br −Br−t, avec t ∈ [0, r].

Example 2.1 (Brownian bridge). Let B be a Brownian
motion, we define bt := Bt − tBt with t ∈ [0, 1]. This is a
centred Gaussian process with covariance s ∧ t− st.

• (bt, t ∈ [0, 1]) ⊥⊥ B1.

• If (bt, t ∈ [0, 1]) is a Brownian bridge then (b1−t, t ∈
[0, 1]) also.

• If (bt, t ∈ [0, 1]) is a Brownian bridge then Bt :=
(1 + t)b t

1+t
is a Brownian motion.

Note that bt = (1− t)B t
1−t

.

Example 2.2. We have limt→0
>
Bt = 0, a.s. By inverting

time,

lim
t→∞

Bt
t

= 0.

Theorem 2.4 (Lévy). Let t > 0 and 0 =: tn0 < · · · <
tnpn := t a set of subdivisions of [0, t] where the interval
max0≤i≤pn−1

(
tni+1 − tni

)
−−−−→
n→∞

0. Then,

pn−1∑
i=0

(
Btni+1

−Btni
)2 L2

−−−−→
n→∞

t.

See the proof after Theorem 1.5.

2.2 Markov property
We denote by (Ω,F ,P) a complete probability space. De-
fine (Ft, t ≥ 0) a filtration, i.e. a growing set of sub-tributes
from F . For all 0 ≤ s ≤ t:

F0 ⊂ Fs ⊂ Ft ⊂ F .

Example 2.3. Let (Xt, t ≥ 0) be a stochastic process and
define for all t ≥ 0,

Ft := σ(Xs, s ∈ [0, t]).

Then (Ft) is a filtration, and it is called the canonical filtra-
tion of the process X.

We say that (Bt, t ≥ 0) is a (Ft)-Brownian motion if:

(i) ∀t ≥ 0, Bt is Ft-measurable (adapted) ;

(ii) ∀s ≥ 0, (Bt+s −Bs, t ≥ 0) is a Brownian motion inde-
pendent from Fs.

Theorem 2.5 (Simple Markov property). We note B a
Brownian motion and (Ft) its associated canonical filtra-
tion, then B is a (Ft)-Brownian motion.

In other words, for all s ≥ 0, (Bt−s − Bs, t ≥ 0) ⊥⊥
σ(Bu, u ∈ [0, s]).

Proof. We just have to show the independence, i.e. that
the vectors (Bt1+s−Bs, . . . , Btn+s−Bs), (Bs1 , . . . , Bsn) are
independent for all 0 ≤ t1 < · · · < tn, 0 ≤ s1 < · · · < sn ≤ s.

We have Cov(Bti+s − Bs, Bsj ) = Cov(Bti+s, Bsj ) −
Cov(Bs, Bsj ) = sj − sj = 0. And (Bt1+s −Bs, . . . , Btn+s −
Bs, Bs1 , . . . , Bsn) is a gaussian vector, so the two previous
vectors are independent.
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Let (Ft) be a filtration. For all t ≥ 0 we note

Ft+ :=
⋂
u>t

Fu.

It is clear that it is also a filtration.

Theorem 2.6 (The 0–1 law of Blumenthal). Let B be a
Brownian motion and (Ft) its associated canonical filtra-
tion. Then for all A ∈ F0+, P(A) = 0 or 1.

Proof. Let us first show that B is a (Ft+)-Brownian mo-
tion. As previously we just have to show the independence
(the other points are clear). So we have to show that, for
A ∈ Fs+, 0 ≤ t1 < · · · < tn and F : Rn → R bounded and
continuous:

E[1AF (Bt1+s −Bs, . . . , Btn+s −Bs)] = (2.1)
P(A)E[1AF (Bt1+s, . . . , Btn+s)].

Let ε > 0, the process t 7→ Bt+s+ε − Bs+ε is independent
from Fs+ε and a fortiori Fs+. So,

E[1AF (Bt1+s+ε −Bs+ε, . . . , Btn+s+ε −Bs+ε)] =

P(A)E[1AF (Bt1+s+ε, . . . , Btn+s+ε)].

By ε → 0, an argument of continuity and the dominated
convergence theorem we obtain (2.1).

So we have that F0+ is independent from σ(Bt, t ≥ 0).
If A ∈ F0+ =

⋂
u>0 Fu ⊂ σ(Bt, t ≥ 0), then A ⊥⊥ A and

P{A} = P{A}2.

Example 2.4. Let τ := inf{t > 0 : Bt > 0}, then τ = 0 a.s.
Indeed,

{τ = 0} =
⋂

t∈]0,ε]
t∈Q

{ sup
s∈[0,t]
s∈Q

Bs > 0} , ∀ε > 0

So {τ = 0} =
⋂
ε>0 Fε = F0+, we now know that P{τ =

0} = 0 or 1. For all t ≥ 0, P{τ ≤ t} ≥ P{Bt > 0} = 1
2 and

P{τ ≤ t} = limε→0 ↓ P{τ ≤ t} ≥ 1
2 , then τ = 0 a.s.

By time inversion we also see that {t > 0 : Bt = 0} is
non bounded a.s.

Let (Ft) be a filtration, we define

F∞ := σ(Ft, t ≥ 0) ,

the tiniest tribe that contains all the elements of the tribes
Ft.

Definition 2.3 (Stopping time). The application T : Ω →
R+ ∪ {∞} is a stopping time if for all t ≥ 0, {T ≤ t} ∈ Ft.

Example 2.5. The constant T = t is a stopping time. And
Ta := inf{t > 0 : Bt = a} is also a stopping time, indeed
{Ta ≤ t} = {sup0≤s≤tBs = a} ∈ Ft.

Definition 2.4. Let T be a stopping time. The tribe of
previous events to T is

FT := {A ∈ F∞ : ∀t ≥ 0,∩{T ≤ t} ∈ Ft}.

Theorem 2.7 (Strong Markov property). We note B a
Brownian motion and (Ft) its associated canonical filtra-
tion. Let T be a stopping time. Conditionaly to {T < ∞},
the process (BT+t − BT , t ≥ 0) is a Brownian motion inde-
pendent from (FT ).

Proof.

Theorem 2.8 (Reflexivity). Let B be a Brownian motion.
With t ≥ 0, we note St := sups∈[0,t]Bs. Then,

P{St ≥ a,Bt ≤ b} = P{Bt ≥ 2a− b}.

for all a ≥ 0, b ≤ a.
In particular for all fixed t, St ∼ |Bt|.

Remark. It is just for t fixed, the equality in law between
(St, t ≥ 0) and (|Bt|, t ≥ 0) is false.

Proof.

P{Sa ≥ t, Bt ≤ b} = P{Ta ≤ t, Bt ≤ t}
= P{Ta ≤ t, B̃t−Ta ≤ b− a} ,

B̃s := Bs+Ta −BTa
= P{(Ta, B̃) ∈ At} ,

where At := {(u, x) ∈ R+×?, 0 ≤ u ≤ t, x(t − u) ≤ b − a)}.
We have P(Ta,B̃) = PTa ⊗PB̃ as Ta ⊥⊥ B̃. And B̃ ∼ −B̃, so,

P{Sa ≥ t, Bt ≤ b} = P{(Ta,−B̃t) ∈ At}
= P{Ta ≤ t,−B̃t−Ta ≤ b− a}
= P{Ta ≤ t︸ ︷︷ ︸

St≥a

,−(Bt − a) ≤ b− a︸ ︷︷ ︸
Bt≥2a−b

}

= P{Bt ≥ 2a− b} , as 2a− b ≥ a.

To prove that they have the same law,

P{Sa ≥ a} = P{Sa ≥ a,Bt ≤ a}+ P{Sa ≥ a,Bt > a}
= P{Bt ≥ 2a− a}+ P{ Bt︸︷︷︸

=−Bt

≥ a}

= P{|Bt| ≥ a}.

Corollary. For all t > 0, the density of (St, Bt) is

2(2a− b)√
2at3

exp

(
− (2a− b)2

2t

)
1{a>0,b<a}.

Example 2.6. Let t > 0 and a > 0,

P{Ta ≤ t} = P{St ≥ a}
= P{|Bt| ≥ a}
= P{|

√
tB1| ≥ a}

= P
{
t ≥ a2

|B1|2

}
.

So Ta ∼ a2

B2
1
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2.3 Semi-group of the Brownian motion

Let s ≥ 0 and f : R→ R+ measurable, we can write

E[f(Bt+s)|Fs] = E[f(Bt+s −Bs +Bs)|Fs]
= (Ptf)(Bs) ,

where for all x ∈ R, Ptf := E[f(Bt + x)] =∫
R

1√
2πt

exp
(
− (x−y)2

2t

)
f(y)dy.

(Pt, t ≥ 0) is the semi-group of B. Indeed,

Pt+sf(x) , E[f(Bt+s + x)]

= E [E[f(Bt+s + x)|Ft]]
= E[(Psf)(Bt + x)]

= Pt(Psf)(x).

Proposition 2.9 (Feller property). Let f ∈ C0 (continuous
s.t. lim|x|→∞ f(x) = 0), then Ptf ∈ C0 and limt↓0 Ptf = f
uniform on R.

Proposition 2.10 (Infinitesimal generator). If f ∈ C2
c

(class C2 on a compact space), then limx↓0
Ptf(x)−f(x)

t =
1
2f
′′(x).

There is a strong link with the heat equation. Let
u(t, x) := Ptf(x). On a u(0, x) = f(x). If f is measur-
able and bounded then,

∂u

∂t
=

1

2

∂2u

∂x2
.

3 Continuous-time martingale

3.1 Progressive processes

Let (Ω,F , (Ft),P) be a filtered (probability) space. We de-
fine

Ft+ =
⋂
u>y

Fu ,

for t ≥ 0.

Definition 3.1 (Right continuity). We say that (Ft)t≥0 is
right continuous if ∀t > 0, Ft+ = F .

Definition 3.2 (Complete). We say that (Ft)t≥0 is com-
plete if F0 contains all the P-null sets.

Proposition 3.1. We have a bunch of properties about the
process (Xt, t ≥ 0):

(i) it is right (respectively left) continuous if a.s. t 7→ Xt

is right (respectively left) continuous.

(ii) it is adapted if ∀t ≥, Xt is Ft-measurable ;

(iii) it is progressive (or progressively measurable) if ∀t ≥ 0,
(s, ω) 7→ Xs(ω) is measurable along B([0, t])⊗Ft.

We have (Xt, t ≥ 0) progressive ⇒ (Xt, t ≥ 0) adapted.
The reverse is generally false.

Proposition 3.2. If (Ft) is complete and (Xt, t ≥ 0)
a process in Rd, adapted, right (or left) continuous, then
(Xt, t ≥ 0) is progressive.

Proof. Let (Xt, t ≥ 0) be right continuous, so ∀t ≥ 0, ∀n ≥ 1
we set

X(n)
s := X (bnst c+1)t

n ∧t
,

with s ∈ [0, t]. And ∀s ∈ [0, t], X(n)
s → Xs. Now for all

A ∈ B(Rd), {(s, ω) ∈ [0, t] × Ω : X
(n)
s (ω) ∈ A} can be writ-

ten as⋃n
k=1

([
(k−1)t
n , ktn

[
×X−1

kt
n

(A)
)⋃(

{t} ×X−1
t (A)

)
.

Where X−1
kt
n

(A) is F kt
n
-measurable so Ft-measurable. And

Ft is complete so P-null sets make no trouble and Xs is
B([0, t])⊗Ft-measurable as limit of B([0, t])⊗Ft-measurable
functions.

Let A ⊂ R+ × Ω and A ∈ B(R+) ⊗ F , is progressive if
(xt(ω) := 1{(t,ω}∈A, t ≥ 0) is a progressive process. And

• {A progressive} is a tribe called the progressive tribe
;

• (Xt, t ≥ 0) is pregressive ⇔ (t, ω) 7→ Xt(ω) along the
progressive tribe.

3.2 Stopping time

Let (Ω,F , (Ft),P) be a filtered space. We recall

F∞ := σ(Ft, t ≥ 0) ,

and that T : Ω → R ∪ {∞} is a stopping time if ∀t ≥ 0,
{T ≤ t} ∈ Ft.

Definition 3.3. If T is a stopping a time we set

FT := {A ∈ F∞ : A ∩ {T ≤ t} ∈ Ft,∀t ≥ 0}.

Proposition 3.3. We have the following properties:

(i) if S ≤ T stopping times ⇒ FS ⊂ FT ;

(ii) S, T stooping times ⇒ S∨T , S∧T stopping times and
FS∧T = FS ∩ FT ;

(iii) {S ≤ T}, {S < T}, {S = T} ∈ FS∧T ;

(iv) (Ft) right continuous and T stopping time ⇔ {T <
t} ∈ Ft, ∀t > 0 ;

(v) (Ft) right continuous and (Tn) set of stopping time ⇒
T := infn≥1 Tn stopping time and FT =

⋂
n≥1 FTn .
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Proof. (i). ∀A ∈ FS we have A ∈ F∞ this is trivial. We
just have to show that A ∩ {T ≤ t} ∈ Ft for all t. Indeed,

A ∩ {T ≤ t} ∈ Ft = A ∩ {S ≤ t}︸ ︷︷ ︸
∈Ft

∩{T ≤ t}︸ ︷︷ ︸
∈Ft

.

(ii). For all t,

{S ∧ T} = {S ≤ t}︸ ︷︷ ︸
∈Ft

∩{T ≤ t}︸ ︷︷ ︸
∈Ft

,

so {S ∧ T} ∈ Ft and it’s a stopping time. We use the same
proof for S ∨ T .
FS∧T ⊂ FS and ⊂ FT so FS∧T ⊂ FS ∩ FT . Now let
A ∈ FS ∩ FT , and for all t,

A ∩ {S ∧ T ≤ t} = (A ∩ {S ≤ t})︸ ︷︷ ︸
∈Ft

∪ (A ∩ {T ≤ t})︸ ︷︷ ︸
∈Ft

∈ Ft ,

so A ∈ FS∧T and FS∧T ⊃ FS ∩ FT .

Proposition 3.4. Let T be a stopping time, for all n ≥ 0
set

Tn :=

∞∑
k=0

k

2n
1{ k−1

2n <T≤ k
2n } + ∞1{∞} ,

then (Tn, n ≥ 1) is a stopping time set that converges to-
wards T .

Proof. For all t,

{Tn ≤ t} = {T < t} ∩ {Tn ≤ t}︸ ︷︷ ︸
∈FT

∈ Ft.

So it’s a stopping time.

Theorem 3.5. Let (Xt, t ≥ 0) be a progressive process in Rd
and T a stopping time. Then 1{T<∞}XT is FT -measurable.

If furthermore Xt(ω) −−−→
t→∞

X∞(ω) ∈ Rd, ∀ω ∈ Ω then
XT is FT -measurable.

3.3 Continuous time martingale
Let (Ω,F , (Ft),P) be a filtered space.

Definition 3.4 (Martingale). We call (Mt, t ≥ 0) a martin-
gale (respectively submartingale, supermartingale) if

(i) (Mt, t ≥ 0) is adapted ;

(ii) ∀t ≥ 0, E[|Mt|] <∞ ;

(iii) ∀t ≥ s ≥ 0, E[Mt|Fs] = Ms a.s. (respectively ≥, ≤).

Remark. It is clear that for (Mt, t ≥ 0) submartingale (resp.
supermartingale), t 7→ E[Mt] is growing (resp. is decreas-
ing).

Example 3.1. Let B = (Bt, t ≥ 0) be a (Ft)-brownian
motion, then the following processes are martingales

(i) (Bt, t ≥ 0) ;

(ii) (B2
t − 1, t ≥ 0) ;

(iii) (eθBt−
θ2

2 t, with θ ∈ R.

Remark. If (Mt, t ≥ 0) is a martingale and f : R→ R convex
s.t. E[|f(Mt)|] <∞, then (f(Mt), t ≥ 0) is a submartingale.

Theorem 3.6 (Maximal inequality). Let (Mt, t ≥ 0) be a
submartingale right continuous, then

P

{
sup
s∈[0,t]

Ms > λ

}
≤ E[|Mt|]

λ
,

for all λ > 0, t ≥ 0.

Theorem 3.7 (Doob’s inequality). Let (Mt, t ≥ 0) be a
right continuous martingale and p > 1 ∈ R. Then∥∥∥∥∥ sup

s∈[0,t]

|Ms|

∥∥∥∥∥
p

≤ q‖Mt‖p ,

for all t ≥ 0, where 1
p + 1

q = 1.

And consequently∥∥∥∥sup
s≥0
|Ms|

∥∥∥∥
p

≤ q sup
s≥0
‖Ms‖p

3.4 Convergence and optimal stopping the-
orem

Theorem 3.8. Let (Mt, t ≥ 0) be right continuous sub-
martingale s.t. supt≥0 E[Mt] < ∞ (one can show that a
equivalent is supt≥0 E[|Mt|] <∞) then,

M∞ := lim
t→∞

Mt exists a.s.

and E[|M∞|] <∞.

Proof. We define D ⊂ R+ a countable dense space. With
a < b ∈ R, Nab([0, t] ∩ D) is the number of grows of
(Ms, s ∈ [0, t] ∩D) along [a, b]. We have

E[Nab([0, t] ∩D)] ≤ E[(Mt − a)+]

b− a

≤
supu≥0 E[(Mu)+ + |a|]

b− a
< ∞.

Then with t → ∞ we have for all a < b, Nab(D) < ∞ a.s.
and so limt→∞

t∈D
Mt exists.

Then with Fatou we verify that this limit is not ±∞, and
finally as D is dense we have the result on R+ by writing
the definition of the limit.

Corollary. Let (Mt, t ≥ 0) be a positive right continuous
spermartingale, then Mt

a.s.−−−→
t→∞

M∞ and E[M∞] ≤ E[M0] <
∞.
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Theorem 3.9. Let p > 1 be a real number and (Mt, t ≥ 0) a
right continuous martingale s.t. supt≥0 E[|Mt|p] <∞, then

Mt
LP a.s.−−−−−→
t→∞

M∞.

Proof.

Theorem 3.10. Let (Mt, t ≥ 0) be a right continuous sub-
martingale uniformly integrable (UI), then

(i) Mt
L1

−−−→
t→∞

m∞ ;

(ii) Mt
a.s.−−−→
t→∞

m∞ ;

(iii) ∀t ≥ 0, Mt ≤ E[M∞|Ft] a.s.

Theorem 3.11 (Optimal stopping theorem). Let (Mt, t ≥
0) be a right continuous submartingale and S ≤ T stopping
times. If (a) (Mt, t ≥ 0) UI or (b) S ≤ T bounded (∃C <∞
s.t. T (ω) ≤ C, for all ω ∈ Ω) then

MS ≤ E[Mt|FS ] a.s.

And consequently E[MS ] ≤ E[Mt].

Example 3.2. (Mt, t ≥ 0) a right continuous submartingale
and S ≤ T , bounded stopping times. Then E[MT |FS ] ≥
MS∧T a.s.

Indeed,

E[MT |FS ] = E[MT1{S≤T}|FS ] + E[MT1{S>T}|FS ]

= E[MT∨S1{S≤T}|FS ] + E[MT∧S1{S>T}|FS ]

= 1{S≤T} E[MT∨S |FS ]︸ ︷︷ ︸
≥MS

+1{S>T} E[MT∧S |FS ]︸ ︷︷ ︸
=MS∧T

≥ MS∧T .

Example 3.3. (Mt, t ≥ 0) a right continuous submartingale
and T stopping time, then (MT∧t, t ≥ 0) a right continuous
submartingale.

Indeed for all t ≥ 0, MT∧t is (FT∧t)-measurable so
(Ft)-measurable. And for all t ≥ s ≥ 0, E[MT∧t|Fs] ≥
M(T∧t)∧s = MT∧s.

3.5 Example: Brownian motion
Example 3.4. Let Ta := inf{t ≥ 0 : Bt = a}. We know
that (Mt := eθBt−

θ2

2 t, t ≥ 0) is a martingale. For a > 0,
(MTa∧t, t ≥ 0) continuous bounded martingale, so UI. And
so E[MTa ] = E[M0] = 1 with the optimal stopping theorem.
On the other hand E[MTa ] = E[eθa−

θ2

2 Ta ] and then with
λ := θ2

2 ,

E[e−λTa ] = e−
√

2λa2 .

Example 3.5. Let (Xt, Yt) be Brownian motion in R2 with
X0 = 0 and Y1 = 1. We are looking for the distribution of
XT with T := inf{t ≥ 0 : Yt = 0}.

Let a ∈ R,

E
[
eiaXT

]
= E

[
E
[
eiaXT |Yt

]]
= E

[
e−

a2

2 T
]

= e−|a| ,

i.e. XT has a standard Cauchy distribution.

4 Continuous semimartingales

4.1 Finite variation processes
Let r > 0 fixed and a : [0, r] → R a finite variation con-
tinuous function with a(0) = 0. It is variation finite if
a = c+ − c− where c± : [0, r]→ R growing functions.

We can assume that c± are continuous and c±(0) = 0.
Let µ± be Stieltjes measures associated to c±, so

µ±([0, t]) = c±(t) ,

for all t ∈ [0, r].

Theorem 4.1 (Stieltjes). Let F : R→ R growing and right
continuous function, then there exists a unique measure µ
on R s.t.

µ(]a, b]) = F (b)− F (a) ,

for all a < b ∈ R.

We can write

µ := µ+ − µ− ,

where µ± are signed measures on [0, r]. Actually this de-
composition is unique and exists if µ± are orthogonal, i.e.
for all A measurable µ+(A) = µ−(AC) = 0.

We can also write

|µ| := µ+ + µ− ,

the total variation measure associated to the function a.
And we have µ± � |µ| (i.e. ∀A s.t. |µ|(A) = 0 ⇒
µ±(A) = 0).

Proposition 4.2. With the subdivisions 0 =: t0 < · · · <
tp := r,

|µ|([0, r]) = sup
ti

p∑
i=1

|a(ti)− a(ti−1)|.

Proof.

We still have a : [0, r] → R a finite variation continuous
function with a(0) = 0, and f : [0, r] → R measurable s.t.∫

[0,r]
|f |d|µ| <∞. Then we define∫ t

0

f(x) da(s) :=

∫ t

0

f(s)µ(ds)

:=

∫ t

0

f(s)µ+(ds)−
∫ t

0

f(s)µ−(ds) ∈ R,
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for all t ∈ [0, r]. And also∫ t

0

f(x) |da(s)| :=

∫ t

0

f(s) |µ|(ds)

:=

∫ t

0

f(s)µ+(ds) +

∫ t

0

f(s)µ−(ds) ∈ R.

We have the triangular inequality∣∣∣∣∫ t

0

f(s) da(s)

∣∣∣∣ ≤ ∫ t

0

|f(s)||da(s)|.

Lemma 4.3. Let f : [0, r] → R be continuous and a se-
quence of subdivisons of [0, r]: 0 =: tn0 < · · · < tnpn := r from
which the interval goes to 0. Then∫ t

0

f(s) da(s) = lim
n→∞

pn∑
i=1

f(tni−1)
(
a(tni )− a(tni−1)

)
.

Proof. We define for all n, fn(s) :=
∑pn
i=1 f(tni−1)1]tni−1,t

n
i ](s),

so

pn∑
i=1

f(tni−1)
(
a(tni )− a(tni−1)

)
=

∫ r

0

fn(s) da(s)

−−−−→
n→∞

∫ r

0

f(s) da(s) ,

with dominated convergence.

Now we can enlarge this result on R. a : R+ → R is a
finite variation on R+ (i.e. if for all r > 0, a is a finite vari-
ation function on [0, r]) continuous function with a(0) = 0.
Let f : R+ → R measurable s.t.

∫∞
0
|f(s)||da(s)| :=

supr>0

∫ r
0
|f(s)||da(s)| <∞. Then∫ ∞
0

f(s) da(s) := lim
r→∞

∫ r

0

f(s) da(s).

Let us now define a filtered space (Ω,F , (Ft),P), with
the filtration (Ft) that is right continuous and complete.

Proposition 4.4. Let (Vt, t ≥ 0) be a continuous
and adapted process, with finite variations and V0 = 0.
And (Ht, t ≥ 0) a progressive process, s.t. ∀t > 0,∫ t

0
|Hs(ω)||dVs(ω)| <∞ a.s. Then,(∫ t

0

Hs dVs, t ≥ 0

)
is a continuous, adapted process, null in 0 and with finite
variations.

4.2 Continuous local martingales
We note with X := (Xt, t ≥ 0), T a stopping time,

XT := (Xt∧T , t ≥ 0).

Definition 4.1 (Local martingale (continuous)). We call
M := (Mt, t ≥ 0) a local martingale if there exists
(Tn, n ≥ 1) growing sequence of stopping time s.t. Tn ↑ ∞
a.s. and that for all n ≥ 1, MTn − M0 is a continuous
martingale UI.

But be careful we don’t know anything about Mt, espe-
cially ∀t, E[|Mt|] ≤ ∞.

We say that (Tn) reduces M .
Remark. • M if a continuous martingale⇒M is a local

continuous martingale (just take Tn := n).

• In the definition we can suppose that for all n, MTn −
M0 is a bounded martingale.

• M is a local continuous martingale, T stopping time,
⇒ MT local martingale.

• (Tn) reduces M , (Sn) a stopping time ↑ ∞ a.s. ⇒
(Tn ∧ Sn) reduces M .

• A linear combination of two local martingale is a local
martingale.

Proposition 4.5. We have the following properties

(i) M local positive continuous martingale, E[M0] < ∞
⇒ M supermartingale.

(ii) M local continuous martingale s.t. ∀t ≥ 0,
E[sups∈[0,t] |Ms|] <∞ ⇒ M martingale.

(iii) M local continuous martingale s.t. E[supt∈[0,t] |Mt|] <
∞ ⇒ M martingale UI.

Proof. Let (Tn) reduce M .
(i). ∀n, MTn − M0 a martingale UI. We have M0 is

F0-measurable so MTn is a martingale UI. And so for all
t ≥ s ≥ 0,

E[MTn∧t︸ ︷︷ ︸
a.s.−−→Mt

|Fs] = MTn∧s︸ ︷︷ ︸
a.s.−−→Ms

.

So by Fatou’s Lemma,

E[Mt|Fs] ≤ lim inf
n→∞

E[MTn∧t|Fs] = Ms.

(ii).∀t ≥ s ≥ 0, ∀A ∈ Fs, E[MTn∧t1A] =
E[MTn∧s1A]. And MTn∧t −→ Mt, so by dominated conver-
gence E[MTn∧t1A] −→ E[Mt1A]. We have the same for the
right hand side in the equality. So for all A ∈ Fs,

E[Mt1A] = E[Ms1A]

⇒ E[Mt|Fs] = E[Ms|Fs] = Ms.

1Recall that if a is at finite variation then

|µ|([0, r]) = sup
ti

|a(ti)− a(ti+1)|.
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Theorem 4.6. Let M be a local continuous martingale,
M0 = 0 a.s. If M is at finite variation1, then

P{Mt = 0, ∀t ≥ 0} = 1.

Proof.

4.3 Quadratic variation
Theorem 4.7. Let M be a local continuous martingale,
then

(i) There exists a unique2 continuous adapted growing
process, null in 0, that we note 〈M〉 = (〈M〉t, t ≥ 0)
s.t.

(
M2
t − 〈M〉t, t ≥ 0

)
is a local continuous martin-

gale.

(ii) For all t > 0, for all 0 =: tn0 < · · · < tnpn := t sequence
of subdivision of [0, t] where the intervals go to 0,

pn∑
i=1

(Mtni
−Mtni−1

)2 P−−−−→
n→∞

〈M〉t.

Proof. (Unicity). Assume that X and Y satisfy the condi-
tions of 〈M〉, then M2 −X, M2 − Y are local martingales
⇒ X−Y , is a local martingale with finite variation, null in
0, and with Theorem 4.6, P{Xt − Yt = 0, t ≥ 0} = 1.

We call 〈M〉 the quadratic variation of M .

Example 4.1. Let B be a (Ft)-brownian motion, then
〈B〉t = t, consequence of the Levy theorem, or the fact that
(B2

t − t, t ≥ 0) is a martingale.

Proposition 4.8. Let M be a local continuous martingale
and T a stopping time, then

〈MT 〉 = 〈M〉T .

Proof. We have by definition (MT )2−〈MT 〉 which is a local
martingale, so let us just show that (MT )2 − 〈M〉T is also
a local martingale and the proof is made. For t ≥ 0,

(MT )2
t − 〈M〉Tt = M2

T∧t − 〈M〉T∧t ,

which is a local martingale.

Theorem 4.9. Let M be a local continuous martingale,
M0 = 0,

(i) E[〈M〉t] < ∞, ∀t ≥ 0 ⇔ M is square-integrable. In
this case (M2

t − 〈M〉t, t ≥ 0) is a martingale null in
0.

(ii) E[〈M〉∞] < ∞ ⇔ M is a martingale s.t.
supt≥0 E[M2

t ] <∞(3). In this case (M2
t −〈M〉t, t ≥ 0)

is a UI martingale null in 0.

Proof.

Corollary. LetM be a local continuous martingale, M0 = 0
a.s. Then,

P{〈M〉t = 0, ∀t ≥ 0} = 1 ⇔ P{Mt = 0, ∀t ≥ 0} = 1.

Proof. “⇐” is trivial. For the other implication, assume that
〈M〉 = 0 a.s. then with (ii) of Theorem (4.9), M2 is a UI
martingale, and E[M2

t ] = E[M2
0 ] = 0.

Definition 4.2. Let M,N be local continuous martingale,

〈M,N〉 :=
1

4
(〈M +N〉t − 〈M −N〉t)

=
1

2
(〈M +N〉t − 〈M〉t − 〈N〉t) .

And in particular, 〈M,M〉 = 〈M〉.

Proposition 4.10. (i) 〈M,N〉 is the unique continuous
adapted process at f.v.4, null in 0, s.t. MN − 〈M,N〉
is a local martingale.

(ii) (M,N) 7→ 〈M,N〉 is a symmetrical bi-linear applica-
tion.

(iii) For all t ≥ 0, 0 =: tn0 < · · · < tnpn , where the intervals
go to 0,

pn∑
i=1

(
Mtni

−Mtni−1

)(
Ntni −Ntni−1

)
P−−−−→

n→∞
〈M,N〉t.

(iv) Let T be a stopping time, 〈M,N〉T = 〈MT , N〉 =
〈M,NT 〉 = 〈MT , NT 〉.

Proof. If we use the property of polarisation, i.e. ab =
1
4

(
(a+ b)2 − (a− b)2

)
, we already proved everything.

Remark. Let M,N be continuous martingales null in 0 s.t.
E[〈M〉∞] < ∞, E[〈N〉∞] < ∞, then MN − 〈M,N〉 is a UI
martingale.

Definition 4.3 (Orthogonality). Two martingales are said
to be orthogonal if 〈M,N〉 = 0, i.e. MN is a local martin-
gale.

Theorem 4.11 (Kunita–Watanabe inequality). Let M,N
be two continuous local martingales, and H,K two measur-
able processes (R+ × Ω,B(R+)⊗F)→ (R,B(R)) (5), then∫ ∞

0

|Hs||Ks||d〈M,N〉s|

≤

√∫ ∞
0

H2
s d〈M〉s ·

√∫ ∞
0

K2
s d〈N〉s

2In the sense that if (Xt) and (Yt) follow this property then P{Xt = Yt, ∀t ≥ 0} = 1.
3With the Doob inequality it is equivalent to have E[supt≥0M

2
t ] <∞.

4Finite variation.
5The process (Xt, t ≥ 0) is measurable if it is progressive.
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Proof. In this proof we will use the notation 〈M,N〉ts :=
〈M,N〉t − 〈M,N〉s, s ≤ t. Then with the Cauchy-Schwarz
inequality we have (with theorem 4.7 and proposition 4.10
(iii)) for all s < t,∣∣〈M,N〉ts

∣∣ ≤ √
〈M〉ts

√
〈N〉ts ,

a.s. Then (4.1) hold a.s. for all s < t ∈ Q, and with the
continuity ∀s < t ∈ R. We will now fix ω ∈ Ω s.t. (4.1) is
true.

Let us define s =: t0 < · · · < tp := t a subdivision,

p∑
i=1

∣∣∣〈M,N〉titi−1

∣∣∣ ≤ p∑
i=1

√
〈M〉titi−1

√
〈N〉titi−1

≤

√√√√ p∑
i=1

〈M〉titi−1

√√√√ p∑
i=1

〈N〉titi−1

=
√
〈M〉ts〈N〉ts.

By taking the supremum6 on all the subdivisions of [s, t],∫
[s,t]

|d〈M,N〉u| ≤
√
〈M〉ts〈N〉ts.

(...)

4.4 Continuous semimartingale

Definition 4.4 (Semimartingale). A process (Xt, t ≥ 0) is
a continuous semimartingale if it can written as

Xt = X0 + Mt + Vt ,

whereM is a local continuous martingale, V is a continuous
adapted v.f. process, and M0 = V0 = 0 a.s.

Remark. We call this decomposition the (unique) canonical
decomposition of X.

Definition 4.5. Let Xt = X0 +Mt+Vt, Yt = Y0 +Nt+Wt

be two continuous semimartingales. We set

〈X,Y 〉t := 〈M,N〉t.

In particular 〈X〉t = 〈M〉t.

Proposition 4.12. Let X,Y be two continuous semi-
martingales, and 0 =: tn0 < · · · < tnpn a sequence of sub-
division where the intervals go to 0 as n→∞, then

pn∑
i=1

(
Xtni
−Xtni−1

)(
Ytni − Ytni−1

)
P−−−−→

n→∞
〈X,Y 〉t.

Proof. By polarisation we can prove the result with X = Y .
Indeed,

pn∑
i=1

(
Xtni
−Xtni−1

)2

= In + Jn + Kn ,

with,
In =

∑pn
i=1

(
Mtni

−Mtni−1

)2

Jn =
∑pn
i=1

(
Mtni

−Mtni−1

)2

Kn = 2
∑pn
i=1

(
Mtni

−Mtni−1

)(
Vtni − Vtni−1

)
.

we already have In
P−−−−→

n→∞
〈M〉t = 〈X〉t. And

|Jn| ≤ max |Vtni − Vtni−1
|︸ ︷︷ ︸

a.s.−−→0

pn∑
i=1

|Vtni − Vtni−1
|︸ ︷︷ ︸

≤
∫ t
0
|dVs|<∞

a.s.−−→ 0.

Same kind of proof for Kn.

5 Stochastic integral

5.1 Integration for bounded integral in L2

We will first recall some concepts:

• Associativity: let a : R+ → R continus and variation
finite, fR+ → R measurable, ∀f,

∫ t
0
|f(s)||da(s)| <

∞. We also have b(t) :=
∫ t

0
f(s) da(s) variation fi-

nite over R+. Then for all g : R+ → R measure s.t.
∀t ≥ 0,

∫ t
0
|g(s)||f(s)||da(s)| <∞, ∀t ≥ 0∫ t

0

g(s) db(s) =

∫ t

0

g(s)f(s) da(s).

• Integral stopping: ∀T ≥ 0, ∀t ≥ 0,∫ T∧t

0

f(s) da(s) =

∫ t

0

f(s) da(s ∧ T )

=

∫ t

0

f(s)1[0,T ](s) da(s).

• Change of variable: A,α : R+ → R continuous, grow-
ing, A(0) = α(0) = 0. Then for all f : R+ → R+

measure, ∀t,∫ t

0

f(α(s)) dA(α(s)) =

∫ α(t)

0

f(u) dA(u).

6Recall that

sup
ti

p∑
i=1

|a(ti)− a(ti−1)| =

∫
[0,r]
|da|.
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We know define the filtered space (Ω,F , (Ft),P). We use
the notation

H2 :=

{
M : cont. mart., sup

t≥0
E[M2

t ] <∞, M0 = 0

}
Remark. It is equivalent to {M local martingale, E[〈M〉∞] <
∞, M0 = 0} and M2 − 〈M〉 martingale UI.

We observe that for T stopping time, M ∈ H2 ⇒
MT ∈ H2. And for all M,N ∈ H2,

|〈M,N〉∞| ≤
∫ ∞

0

|d〈M,N〉s|

≤(KW )

√∫ ∞
0

d〈M〉s

√∫ ∞
0

d〈N〉s

=
√
〈M〉∞

√
〈N〉∞ ,

hence,

E[|〈M,N〉∞|] ≤(CS)
√
E[〈M〉∞]

√
E[〈N〉∞] < ∞.

We will note (M,N)H2 := E[〈M,N〉∞] ∈ R. We see that
(M,N)H2 = 0 ⇒ M = 0. Actually (M,N)H2 is a scalar
product on H2. With the optimal stopping theorem we have
(M,N)H2 = E[M∞N∞], and

‖M‖2H2 := (M,M)H2

= E[〈M〉∞] = E[M2
∞].

Proposition 5.1. (H2, (·, ·)H2) is an Hilbert space.

Proof.

Now let us note, for all M ∈ H2,

L2(M) :=

{
H prog. proc. / E

[∫ ∞
0

H2
s d〈M〉s

]
<∞

}
= L2(R+ × Ω,P,dPd〈M〉s).

Let H,K ∈ L2(M), we define

(H,K)L2(M) := E
[∫ ∞

0

HsKs d〈M〉s
]
.

Theorem 5.2. Let M ∈ H2, ∀H ∈ L2(M), ∃!H ·M ∈ H2

s.t.

〈H ·M,N〉 = H · 〈M,N〉︸ ︷︷ ︸
:= (

∫ t
0
Hs d〈M,N〉s, t≥0)

,

for all N ∈ H2.
The application

L2(M) → H2

H 7→ H ·M

is an isometry (linear that preserves the norm).

We call H · M =
(

(H ·M)t :=
∫ t

0
Hs dMs, t ≥ 0

)
the

stochastic integral (or Itô’s integral).

Proof.

Proposition 5.3 (Associativity). Let M ∈ H2, K ∈
L2(M), we can then define H ∈ L2(K ·M). Then HK ∈
L2(M), we can define HK ·M ∈ L2(M), and

HK ·M = H · (K ·M).

Proof.

Remark. Then we can write

(i) ∫ t

0

Hs(Ks dMs) =

∫ t

0

HsKs dMs.

(ii) ∀M,N ∈ H2, ∀H ∈ L2(M), ∀K ∈ L2(N),〈∫ ·
0

Hs dMs, N

〉
t

=

∫ t

0

Hs d〈M,N〉s ;〈∫ ·
0

Hs dMs,

∫ ·
0

Ks dNs

〉
t

=

∫ t

0

HsKs d〈M,N〉s ;〈∫ ·
0

Hs dMs

〉
t

=

∫ t

0

H2
s d〈M〉s.

Proposition 5.4. LetM ∈ H2, H ∈ L2(M) and T stopping
time, then

(H ·M)T = H ·MT

= H1[0,T ] ·M.

Proof.

5.2 Integration for continuous semimartin-
gales

Let M be a continuous local martingale, we define

L2
loc(M) :=

{
H prog. proc. / E

[∫ ∞
0

H2
s d〈M〉s

]
<∞

}
.

Theorem 5.5. Let M be a continuous local martingale,
H ∈ L2

loc(M). Then

(i) ∃!H ·M continuous local martingale, null in zero s.t.

〈H ·M,N〉 = H · 〈M,N〉 ,

for all N local martingale.

(ii) With T stopping time, H ·MT = (H ·M)T = H1[0,T ] ·
M .

(iii) IfM ∈ H2, H ∈ L2(M), then H ·M is the Itô’s integral
defined in the last section.

Proof.
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Remark. WithM continuous local martingale, H ∈ L2
loc(M)

and T stopping time,

(i) if E
[∫ T

0
H2
s d〈M〉s

]
<∞, then

E

[∫ T

0

Hs dMs

]
= 0 ;

E

(∫ T

0

Hs dMs

)2
 = E

[∫ T

0

H2
s d〈M〉s

]
;

(ii) if ∀t ≥ 0, E
[∫ T

0
H2
s d〈M〉s

]
< ∞, then(∫ t

0
Hs dMs t ≥ 0

)
is a continuous martingale square

integrable, null in zero, s.t. ∀t ≥ 0,

E
[∫ t

0

Hs dMs

]
= 0 ;

E

[(∫ t

0

Hs dMs

)2
]

= E
[∫ t

0

H2
s d〈M〉s

]
.

We say that H is a process that is locally bounded if for
all t,

sup
s∈[0,t]

|Hs| <∞ a.s.

Definition 5.1. Let X = X0+M+V be a continuous semi-
martingale, and H a progressive process locally bounded,
then we define

H ·X := H ·M + H · V.

Remark. Here H ·M is a local continuous martingale, null
in 0. And H ·V is an adapted continuous process, with finite
variations, null in 0.

Proposition 5.6. Here are few properties that we already
saw. Let H,K progressive processes locally bounded, and X
continuous semimartingale.

(i) H · (K ·X) = HK ·X.

(ii) Let T be a stopping time, then (H ·X)T = H ·XT =
H1[0,T ] ·X.

(iii) If X is a continuous local martingale (or process with
finite variations), then it is the same for H ·X.

(iv) (H,X) 7→ H ·X is bilinear.

(v) Let H progressive s.t. Hs(ω) =
∑p−1
i=0 H

(i)(ω)1]ti,ti+1](s),
where 0 =: t0 < · · · < tp, ∀i H(i) is (Fti)-measurable,
then

(H ·X)t =

p−1∑
i=0

H(i)(Xti+1∧t −Xti∧t).

Proposition 5.7. Let X a continuous semimartingale and
H a continuous adapted process, then ∀t > 0, ∀0 =: tn0 <
. . . tnpn := t where the interval goes to zero with n→∞,∫ t

0

Hs dXs
P
= lim

n→∞

pn−1∑
i=0

Htni

(
Xtni+1

−Xtni

)
.

Proof.

Remark. We have to be careful, it’s wrong to replace Htni
by Htni+1

or any other value in ]Htni
, Htni+1

] in the equality.

Proposition 5.8 (Integration by parts). Let X,Y contin-
uous semimartingales, then

XtYt = X0Y0 +

∫ t

0

Xs dYs +

∫ t

0

Ys dXs + 〈X,Y 〉t

for all t ≥ 0.

Proof.

Remark. With M local continuous martingale,

M2
t = M2

0 + 2

∫ t

0

Ms dMs + 〈M〉t.

6 Itô’s formula and applications

6.1 Itô’s formula
Theorem 6.1 (Itô’s formula). (i) (Unidimensional) Let

X be a continuous semimartingale, f : R → R in C2,
then

f(Xt) = f(X0) +

∫ t

0

f ′(Xs) dXs

+
1

2

∫ t

0

f ′′(Xs) d〈X〉s.

(ii) (Multidimensional) Let X1, . . . , XN be continuous
semimartingales, F : RN → R in C2,

F (Xt) = F (X0) +

N∑
i=1

∫ t

0

∂F

∂xi
(Xs) dXi

s

+
1

2

N∑
i=1

N∑
j=1

∫ t

0

∂2F

∂xi∂xj
(Xs) d〈Xi, Xj〉s.

Proof.

Remark. (i) In the case F (x, y) := xy we found the for-
mula of the integration by parts.

(ii) The Itô’s formula is still true if (Xt, t ≥ 0) with value
inD ⊂ RN an open set (and convex), and if F : D → R
in C2.

(iii) If X1, . . . , Xk are continuous, adapted and with finite
variations, the formula is still true if

F ∈ C

k︷ ︸︸ ︷
1, . . . , 1,

N−k︷ ︸︸ ︷
2, . . . , 2
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(iv) The differential version is

df(Xt) = f ′(Xt) dXt +
1

2
f ′′(Xt) d〈X〉t

Example 6.1 (Multidimensional brownian mo-
tion). We will note n ≥ 1 the dimension,(
B :=

(
B

(1)
t , . . . , B

(n)
t

)
, t ≥ 0

)
a (Ft)-brownian motion in

Rn (hence B(1), . . . , B(n) are independant Ft-brownian mo-
tions).

Let us first see the case n = 1, f : R→ R in C2,

f(Bt) = f(0) +

∫ t

0

f ′(Bs) dBs +
1

2

∫ t

0

f ′′(Bs) ds.

Now we take F : R+ × R→ R ∈ C1,2, hence

F (t, Bt) = F (0, 0) +

∫ t

0

(
∂F

∂s
+

1

2

∂2F

∂x2

)
(s,Bs) ds

+

∫ t

0

∂F

∂x
(s,Bs) dBs.

So if ∂F∂t + 1
2
∂2F
∂x2 = 0 we have (F (t, Bt), t ≥ 0) is a local mar-

tingale7. It is the case for F1(t, x) = x, F2(t, x) = x2 − t,
F3(t, x) = x3 − 3tx, etc. More generally

Hn(x) := (−1)ne
x2

2
dn

dxn

(
e−

x2

2

)
;

Hn(x, t) := t
n
2Hn

(
x√
t

)
(mod. Hermite’s poly.)

and then ∀n, (Hn(Bt, t), t ≥ 0) is a continuous local mar-
tingale. We also have, for all t ≥ 0,

E

[∫ t

0

∣∣∣∣∂Hn

∂x
(Bs, s)

∣∣∣∣2 ds

]
< ∞

sp we know that ∀n, (Hn(Bt, t), t ≥ 0) is a martingale8.
More generally, if B is a (Ft)-brownian motion in Rn,

F : Rn → R in C2,

F (Bt) = F (0) +

n∑
i=1

∫ t

0

∂F

∂xi
(Bs) dBis

+
1

2

∫ t

0

∆F (Bs) ds.

6.2 Exponential semimartingale
Theorem 6.2. Let X be a continuous semimartingale, then
∃!Z continuous semimartingale s.t.

Zt = eX0 +

∫ t

0

Zs dXs , t ≥ 0.

Moreover,

ZT = E(X)t = eXt−
1
2 〈X〉t .

Proof.

Proposition 6.3. Let M be a continuous local martingale,
λ ∈ C, then

E(λM)t := exp

(
λMt −

λ2

2
〈M〉t

)
,

t ≥ 0, is a continuous local martingale C-valued.

Proof.

Let L be a continuous local martingale, L0 = 0. Then
E(L)t is a positive continuous local martingale, E(L)0 = 1.
Hence E(L) is a positive supermartingale and with Fa-
tou’s Lemma E[E(L)∞] ≤ 1. Now we want to know if
E[E(L)∞] = 1, i.e.9 E(L) is a martingale UI.

Theorem 6.4. Let L be a continuous local martingale,
L0 = 0 a.s., then (i) ⇒ (ii) ⇒ (iii).

(i) (Novikov) E
[
e

1
2 〈L〉∞

]
<∞.

(ii) (Kazamaki) L continuous martingale UI, E
[
e

1
2L∞

]
<

∞.

(iii) E[E(L)∞] = 1.

Proof.

6.3 Levy’s characterization of the Brown-
ian motion

We are in a filtered space (Ω,F , (Ft),P). Let B =
(B1, . . . , Bn) a Ft-brownian motion Rn-valued, then

〈Bi, Bj〉t = t1{i=j}.

Theorem 6.5 (Levy). (i) M continuous local martin-
gale, M0 = 0 a.s., then

〈M〉t = t , ∀t ≥ 0 ⇒ M is a (Ft)-brownian
motion.

(ii) M1, . . . ,Mn continuous local martingales null in 0,
then

〈M i,M j〉t = t1{i=j} ⇒ M is a (Ft)-brownian
motion Rn-valued.

Proof.
7Indeed we know that

∫
·dBs is a local martingale.

8Indeed recall that if
∫ t
0 Hs dMs and if ∀t > 0, E

[∫ t
0 H

2
s d〈M〉s

]
<∞, then

(∫ t
0 Hs dMs, t ≥ 0

)
is a martingale square integrable.

9Indeed recall that if M is a continuous positive supermartingale and E[M∞] = E[M0], then M is a martingale UI.
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Example 6.2. Let B a (Ft)-brownian motion, and

βt :=

∫ t

0

sgn(Bs) dBs t ≥ 0 ,

then β is a continuous local martingale, β0 = 0, 〈β〉t =∫ t
0

sgn2(Bs) ds = t. And with Levy’s Theorem β is a (Ft)-
brownian motion.

Example 6.3. Let (X,Y ) two brownian motions R2-valued,
X0 = Y0 = 0. For θ ∈ R,

Xθ
t := Xt cos θ − Yt sin θ ;

Y θt := Xt sin θ + Yt cos θ , t ≥ 0.

Hence Xθ, Y θ are two continuous martingales null in 0 and
〈Xθ〉t = 〈Y θ〉t = t, 〈Xθ, Y θ〉t = 0, then (Xθ, Y θ) is a brow-
nian motion.

More generally let B a (Ft)-brownian motion, A ∈ On,
then (ABt, t ≥ 0) is a brownian motion.

6.4 Dambis–Dubing–Schwarz Theorem

Theorem 6.6 (Dambis–Dubing–Schwarz). LetM be a con-
tinuous local martingale null in 0, then

Mt = B〈M〉t , t ≥ 0

with B a brownian motion.

Proof.

Remark. B is not a (Ft)-brownian motion but a (Fτr )-
brownian motion.

Theorem 6.7 (Knight). Let M1, . . . ,Mn continuous local
martingales, null in 0, 〈M i,M j〉 = 0 for i 6= j, then

∀1 ≤ i ≤ n , M i
t = Bi〈Mi〉t , t ≥ 0 ,

(B1, . . . , Bn) is a brownian motion Rn-valued.

6.5 Examples: multidimensional brownian
motion

Example 6.4. Let M be a continuous local martingale,
M0 = 0 a.s., then

(i) P{limt→∞ |Mt| =∞} = 0.

(ii) {limt→∞Mt exists (is finite)} = {〈M〉∞ <∞} ={
supt≥0Mt <∞ or inft≥0Mt > −∞

}
a.s.

(iii) {〈M〉∞ = ∞} = {lim supt→∞Mt =
∞, lim inft→∞Mt = −∞} a.s.

[Proof to be written]

Example 6.5 (Polar points and 2-d brownian motion). Let
(β, γ) be a brownian motion R2-valued, β0 = γ0 = 0. We
define Mt = eβt cos γt, Nt = eβt sin γt. With Itô we have

dMt = Mt dβt − Nt dγt ;

dNt = Nt dβt + Mt dγt ,

so M,N are local martingales, and

d〈M〉t = e2βt dt ;

d〈N〉t = e2βt dt ;

d〈M,N〉t = 0.

Then with the Knight’s Theorem10, (Mt − 1, Nt) =
B∫ t

0
e2βt ds with B a brownian motion R2-valued. Let us take

ω ∈ {〈M〉∞}, then limt→∞Mt and limt→∞Nt exist and are
finite, hence limt→∞(M2

t +N2
t ) = limt→∞ e2βt exists and is

finite. So we conclude that 〈M〉∞ =∞ a.s.,
∫∞

0
e2βs ds =∞

a.s. So we can write (Mt, Nt) = B〈M〉t + (1, 0), and as
|(Mt, Nt)| = eβt > 0,

P{∃t ≥ 0 , B〈M〉t = (−1, 0)} = 0

⇒ P{∃s ≥ 0 , Bs = (−1, 0)} = 0

⇒ ∀a ∈ R2 \ {0} , P{∃s ≥ 0 , Bs = 0} = 0

with rotation and scaling.

Example 6.6 (3-d brownian motion). Let B be a brownian
motion R3-valued, then limt→∞ |Bt| =∞ a.s.

To show that we just have to show that ∀x ∈ R3 \ {0},
limt→∞ |Bt + x| = ∞ a.s. We define Zt := |Bt + x|2 =∑3
i=1

(
Bit + xi

)2, and with Itô’s formula,

dZt =

3∑
i=1

2(Bit + xi) dBit +
1

2

3∑
i=1

2 dt

= 2

3∑
i=1

(Bit + xi) dBit + 3 dt.

We define f : R∗+ → R, x 7→ 1√
x
, f ∈ C2, and Yt := f(Zt),

with Itô,

Yt = Y0 −
1

2

∫ t

0

1

Z
3
2
t

dZs +
1

2

3

4

∫ t

0

1

Z
5
2
s

d〈Z〉s

= [loc. mart.] − 3

2

∫ t

0

1

Z
3
2
s

ds +
3

8

∫ t

0

22 Zs

Z
5
2
s

ds

= [loc. mart.].

So Y is a positive local martingale and E[Y0] = 1
|x| < ∞,

hence Y is a positive supermartingale, limt→∞ Yt = ξ ≥ 0
a.s. So limt→∞ |Bt + x| = 1

ξ a.s., and we know that
lim supt→∞ |Bt + x| = ∞ a.s., then limt→∞ |Bt + x| = ∞
a.s.

10We have to be careful, M0 = 1 6= 0.
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Example 6.7. Let B be a brownian motion Rn-valued,
n ≥ 2, with B0 = x ∈ Rn \ {0}. We set Zt := |Bt|2,
hence,

dZt = 2

n∑
i=1

Bit dBit + ndt.

Now with f : R∗+ → R ∈ C2, Yt := f(Zt),

dYt = f ′(Zt) dZt +
1

2
f ′′(Zt) d〈Z〉t

= [loc. mart.] + nf ′(Zt) dt +
1

2
f ′′(Zt)× 4Zt dt.

So if f ′(y) + 2
nyf

′′(y) = 0, ∀y ∈ R∗+, then Y is a local
martingale. The following functions have this last property:

f(y) :=
1

2
ln y , for n = 2, y > 0 ;

f(y) := y1−n2 , for n ≥ 3, y > 0.

Now we use the notation Ta := inf{t ≥ 0 : |Bt| = a}, a > 0.
And define 0 < r < |x| < R, then (Yt∧TR∧Tr , t ≥ 0) is
a continuous bounded local martingale, so a martingale UI.
With the optimal stopping theorem we have E [f(ZTR∧Tr )] =
f(|x|2). With n = 2,

E [ln |BTR∧Tr |] = ln |x|
⇔ E

[
(lnR)1{TR<Tr}

]
+ E

[
(ln r)1{Tr<TR}

]
= ln |x|

⇔ (lnR)P{TR < Tr} + (ln r)P{Tr < TR} = ln |x|

⇔ P{Tr < TR} =
lnR− ln |x|
lnR− ln r

.

So with R→∞, P{Tr <∞} = 1.
Now with n ≥ 3

E
[
|BTR∧Tr |

2−n
]

= |x|2−n

⇔ R2−nP{TR < Tr} + r2−nP{Tr < TR} = |x|2−n

⇔ P{Tr − TR} =
|x|2−n −R2−n

r2−n −R2−n ,

with R→∞, P{Tr <∞} =
(
r
|x|

)n−2

< 1.

6.6 Burkholder–Davis–Gundy inequality
We are in the filtered space (Ω,F , (Ft),P). And for X pro-
cess, we use the notation

X∗t := sup
s∈[0,t]

|Xs| , ∀t ∈ R+ ∪ {∞}.

Theorem 6.8 (Burkholder–Davis–Gundy). Let p ∈ R∗+,
then ∃0 < cp ≤ Cp < ∞ s.t. ∀M continuous local martin-
gale, M0 = 0 a.s.,

cpE
[
〈M〉

p
2∞

]
≤ E [(M∗∞)p] ≤ CpE

[
〈M〉

p
2∞

]
.

And in particular, ∀T stopping time,

cpE
[
〈M〉

p
2

T

]
≤ E [(M∗T )p] ≤ CpE

[
〈M〉

p
2

T

]
.

Lemma 6.9. Let B be a (Ft)-brownian motion, T a stop-
ping time, β > 1, δ > 0, x > 0, then

P
{
B∗T > βx,

√
T ≤ δx

}
≤ δ2

(β − 1)2
P {B∗T ≥ x} ;

P
{√

T > βx, B∗T ≤ δx
}
≤ δ2

β2 − 1
P
{√

T ≥ x
}
.

Lemma 6.10. Let ξ ≥ 0, η ≥ 0, r.v. s.t.

P{ξ > 2x, η ≤ δx} ≤ δ2P{ξ ≥ x} , ∀δ, x > 0 ,

then, ∀p > 0, ∃c(p) <∞ s.t.

E [ξp] ≤ c(p)E[ηp].

Proof. (Theorem 6.8)

Proof. (Lemma 6.9)

Proof. (Lemma 6.10)

Example 6.8. Let M be a continuous local martingale,
M0 = 0 a.s.,

E[〈M〉∞] < ∞ ⇔ E
[
(M∗∞)2

]
< ∞ (BDG)

⇔ M martingale bounded in L2.

Example 6.9 (Wald identities). Let B be a (Ft)-brownian
motion, T a stopping time,

E
[√

T
]
<∞ ⇔ E[ B∗T︸︷︷︸

= (BT )∗∞

] <∞ (BDG)

⇒ BT martingale UI
⇒ E[BT ] = E[B0] = 0 (Opt. stopping)

E[T ] <∞ ⇔ E
[
(B∗T )2

]
<∞ (BDG)

⇒ BT ,
(
(BTt )2 − (T ∧ t), t ≥ 0

)
mart. UI

⇒ E
[
B2
T − T

]
= 0

⇒ E
[
B2
T

]
= E[T ].

6.7 Martingales of a brownian filtration
We are in the complete probability space (Ω,F ,P). Let B
be a brownian motion. And we set (Ft) (the usually aug-
mentation of) the canonical filtration of B.

Theorem 6.11. Let (Ft) be (the usually augmentation of)
the canonical filtration of B, then for all M continuous local
martingale, there exists a unique constant c and a progres-
sive process (Ht, t ≥ 0) s.t. ∀t > 0,

∫ t
0
H2
s ds < ∞ a.s.,

s.t.

Mt = c +

∫ t

0

Hs dBs.

If moreover M is a continuous martingale with
supt≥0 E[M2

t ] <∞ then

E
[∫ ∞

0

H2
s ds

]
< ∞.

16



6.8 Girsanov theorem

We are in the filtered space (Ω,F , (Ft),P).

Theorem 6.12 (Girsanov). Define (Lt, t ≥ 0) a continu-
ous local martingale, L0 = 0 a.s. Assume that E[E(L)∞] = 1
(i.e. E(L) is a martingale UI). Let Q be a probability mea-
sure on (Ω,F∞) defined by Q := E(L)∞ · P (i.e. ∀A ∈ F∞,
Q = E[E(L)∞1A]). Then for all M local continuous P-
martingale,

M − 〈M,L〉

is a local continuous Q-martingale.

Proof.

Remark. (i) Q� P on F∞, but not the inverse. And we
have ∀t ≥ 0, Q ∼ P on Ft.

(ii) If X is a P-semimartingale, it’s also a Q-
semimartingale.

(iii) A result P-a.s. or in probability hold un Q.

(iv) SetB a (Ft)-brownian motion under P, thenB−〈B,L〉
is a (Ft)-brownian motion under Q.

Theorem 6.13 (Girsanov, horizon finite version). For t >
0, let (Ls, s ∈ [0, t]) be a continuous local martingale, L0 = 0

a.s. Assume that E
[
eLt−

1
2 〈L〉t

]
= 1. Let Q on (Ω,Ft) be the

probability measure defined by Q = eLt−
1
2 〈L〉t ·P. Then for all

M local P-martingale, the process (Ms − 〈M,L〉s, s ∈ [0, t])
is a local Q-martingale.

Example 6.10 (Cameron–Martin). Let h : R+ → R
measurable s.t. ∀t,

∫ t
0
h2(s) ds < ∞. We define Lt :=∫ t

0
h(s) dBs, t ≥ 0. Then (E(L)t, t ≥ 0) is a positive super-

martingale and as E[e
1
2 〈L〉t ] <∞, ∀t > 0, (E(L)s, s ∈ [0, t])

is a martingale UI.
There exists11 a probability Q s.t. ∀t, Q|Ft = E(L)t ·P|Ft .

With the Girsanov theorem ∀t ≥ 0, (Bs −
∫ t

0
h(u) du, s ∈

[0, t]) is a Q-brownian motion. Then (Bs−
∫ t

0
h(u) du, s ≥ 0)

is a Q-brownian motion.
In particular let h(t) = γ ∈ R, then Q|Ft = eγBt−

1
2γ

2t ·
P|Ft . The process (Bt − γt, t ≥ 0) is a Q-brownian motion
and then B under Q is a brownian motion with drift γ.

We are looking at Ta := inf{t ≥ 0 : Bt = a}, for all

t ≥ 0,

Q{Ta ≤ t} = E
[
eγBt−

1
2γ

2t
1{Ta≤t}

]
= E

[
E
[
eγBt−

1
2γ

2t
1{Ta≤t}

∣∣∣FTa∧t]]
= E

[
1{Ta≤t}E

[
eγBt−

1
2γ

2t
∣∣∣FTa∧t]]

= E
[
1{Ta≤t}e

γBTa∧t− 1
2γ

2(Ta∧t)
]

= E
[
1{Ta≤t}e

γa− 1
2γ

2(Ta∧t)
]
, Ta ∼

a2

B2
1

=

∫ t

0

eγa−
1
2γ

2s |a|√
2πs3

e−
n2

2s ds

=

∫ t

0

|a|√
2πs3

e−
(γs−a)2

2s ds.

Now t→∞,

Q{Ta ≤ t} = E[eγa−
1
2γ

2Ta 1{Ta≤∞}︸ ︷︷ ︸
= 1 P-a.s.

]

= eγa E
[
e−

1
2γ

2Ta
]

︸ ︷︷ ︸
= e−|γ||a|

=

{
1 if γa ≥ 0 ;
e2γa else.

7 Stochastic differential equations

7.1 Strong and weak solutions
Definition 7.1 (Stochastic differential equations). Let
d,m ≥ 1, the applications

σ : R+ × Rd → Md,m(R) ;

b : R+ × Rd → Rd.

are measurable and locally bounded. We define the SDE
E(σ, b)

dXt = σ(t,Xt) dBt + b(t,Xt) dt.

We say that E(σ, b) has a solution if there exists:

• (Ω,F(Ft),P) filtered space,

• B = (B1, . . . , Bm) (Ft)-brownian motion Rm-valued,

• X = (X1, . . . , Xd) continuous adapted process s.t.

Xt = X0 +

∫ t

0

σ(s,Xs) dBs +

∫ t

0

b(s,Xs) ds.

In the special case where X0 = x ∈ Rd, we say that
(Ω,F(Ft),P, B,X) is a solution of Ex(σ, b).

Definition 7.2. (i) The weak existence of E(σ, b) means
that for all x ∈ Rd, there exists a solution for Ex(σ, b).

11This result is given by the theorem of Kolmogorov.
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(ii) The weak uniqueness for E(σ, b) means that ∀x ∈ Rd,
all the solutions for Ex(σ, b) have the same law.

Example 7.1. Let dXt = sgn(Xt) dBt. For a fixed x ∈ R,
∀(Ω,F(Ft),P), β a (Ft)-brownian motion, β0 = x. And we
define

Bt :=

∫ t

0

sgn(βs) dβs.

Then 〈B〉t =
∫ t

0
1 ds = t, and by Levy B is a (Ft)-brownian

motion. And then

dBt = sgn(βt) dβt

⇔ dβt = sgn(βt) dBt.

Example 7.2. Let dXt = dBt + b(t,Xt) dt. For all
(Ω,F(Ft),P), ∀X (Ft)-brownian motion, let Q be a proba-
bility measure s.t.

Q|Ft = exp

(∫ t

0

b(s,Xs) dXs −
1

2

∫ t

0

b(s,Xs)
2 ds

)
· P|Ft

so with Girsanov, Bt := Xt −
∫ t

0
b(s,Xs) ds is a (Ft)-

brownian motion under Q. So (Ω,F(Ft),Q, B,X) is a solu-
tion.

Definition 7.3. (i) Strong uniqueness for E(σ, b) if two
solution X and X̃ associated to the same filtered space
and the same brownian motion s.t. X0 = X̃0 a.s. are
indistinguishable.

(ii) We fix (Ω,F(Ft),P) and B (Ft)-brownian motion. We
say that X is a strong solution for E(σ, b) if X is
adapted according to the canonical filtration of B.

Example 7.3. We retake the SDE dXt = sgn(Xt) dBt.
There is no strong uniqueness, indeed if X is solution with
X0 = 0, then −X is also solution.

Example 7.4. Consider the SDE

dXt = λXt dBt ,

with λ ∈ R. We know from Theorem 6.2 that there
is strong uniqueness and for all x the solution is Xt =
x exp

(
λBt − 1

2λ
2t
)
.

Theorem 7.1 (Yamada–Watanabe). If there is weak exis-
tence and strong uniqueness then there is weak uniqueness.
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