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Part I

1 Portfolio management – Markovitz
and CAPM approach

1.1 Introduction
The goal here is to find the best portfolio combination, i.e.
with the best returns, given a risk level. The portfolio’s per-
formance is measured by its average returns and its risk by
the variance. This gives the idea that we are in a normal
frame.

1.2 Efficient portfolios
1.2.1 Market assumptions and portfolio property

We have two dates on the market, t = 0 is the date of the
investment and t = 1 is when we look at the returns. We
have N risky assets1 and one non-risky asset (NRA).

The rate r of the NRA is known at t = 0 ; we note pi,t
the price of the i-th asset at time t and ri its rate return
between t = 0 and t = 1,

ri =
pi,1
pi,0

− 1 , yi − 1.

And with Y = (y1, . . . , yN )T, we suppose that the following
parameters are known at time t = 0,

µ = E[Y] ;

Ω = Var[Y].

We also assume that for all i ∈ {1, . . . , N}, µi > 1 + r.
Let us consider a portfolio with a quantity a0 of NRA

and ai units of i-th asset ; its value is

Vt = a0p
NRA
t + aTpt , (1.1)

where a = (a1, . . . , aN )T and pt = (p1,t, . . . , pN,t)
T. Espe-

cially,

V0 = a0 + aTp0 ; (1.2)
V1 = a0(1 + r) + aTDiag(p0)Y. (1.3)

On a donc,

E[V1] = a0(1 + r) + aTDiag(p0)µ ; (1.4)
Var[V1] = aTDiag(p0)ΩDiag(p0)a. (1.5)

1.2.2 Average/variance optimizing

Let’s consider that the value of the portfolio at t = 0 is
v. We are looking for the portfolios of maximum expected
return for a variance below a certain level.

Definition 1.1 (Domination). We say that a portfolio A
dominates a portfolio B if E[V A

1 ] > E[V B
1 ] and Var[V A

1 ] ≤
Var[V B

1 ].

Definition 1.2 (Efficient border). We call efficient border
the set of portfolios that are not dominated.

To determine the efficient border for each risk level σ2

we have to solve the problem:

maxa0,a E[V1(a0,a)]
(E)

s.t. Var[V1(a0,a)] ≤ σ2

V0(a0,a) = v

Remark. Solutions of (E) or also solutions of (E’) with,

maxa0,a E[V1(a0,a)]
(E′)

s.t. Var[V1(a0,a)] = σ2

V0(a0,a) = v

Proof. Let’s assume A is solution of (E) s.t. Var[V A
1 ] < σ2

and δ =
√

σ2

Var[V A
1 ]

= 1 + ε, with ε > 0. So

E[V A
1 ] = (v − aTp0)(1 + r)

+ aTDiag(p0)µ. (1.6)

Then let’s consider the portfolio B (aB
0 , δa

T) with aB
0 chosen

s.t. V B
0 = v. Then,

E[V B
1 ] = (v − δaTp0)(1 + r)

+ δaTDiag(p0)µ (1.7)
= E[V A

1 ] + ε(E[V A
1 ]− v(1 + r)︸ ︷︷ ︸
>0 if σ 6=0

) ; (1.8)

Var[V B
1 ] = δ2Var[V A

1 ] (1.9)
= σ2. (1.10)

B dominates A which is absurd.

The problem (E’) can be written

maxa0,a a0(1 + r) + aTDiag(p0)µ

s.t. aTDiag(p0)ΩDiag(p0)a = σ2

a0 + aTp0 = v

Let’s say ωa = Diag(p0)a is the composition in $ of the
portfolio in risky assets. One can write (E’) as,

maxa0,a (v − ωT
a 1)(1 + r) + ωT

a µ
s.t. ωT

a Ωωa = σ2

We note µ̃ = µ−(1+r)1 the extra returns of the risky assets
compared to the NRA. By using the Lagrange method,

max
a0,a

L(ωa, λ) , (1.11)

with L(ωa, λ) = ωT
a µ̃− λ

2 (ωT
a Ωωa − σ2). Then by deriving{

µ̃ + λΩωa = 0
ωT

a Ωωa − σ2 = 0

⇔
{
ωa = 1

λΩ−1µ̃
ωT

a Ωωa = σ2

1To set the ideas we can take N = 40 for the CAC40 index.
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Proposition 1.1. For portfolios of value v at t = 0, the
efficient border is made from portfolios s.t.

a =
1

λ
Diag(p0)−1Ω−1µ̃ ;

a0 = v − 1

λ
µ̃TΩ−11 ;

λ =
1

σ

(
µ̃TΩ−1µ̃

) 1
2 .

1.2.3 Efficient border

For an efficient portfolio,

E[V1] = v(1 + r) +
1

λ

(
µ̃TΩ−1µ̃

)
; (1.12)

√
VaR[V1] =

(
µ̃TΩ−1µ̃

) 1
2

λ
. (1.13)

So by setting λ as parameter,

E[V1] = v(1 + r)

+
√

VaR[V1]
(
µ̃TΩ−1µ̃

) 1
2 . (1.14)

We have a line equation, and so we deduce the Proposition
1.2.

Proposition 1.2. Any efficient portfolio can be written as
the linear combination of two particular portfolios P0 and
P ∗. Respectively a portfolio of NRA and risky assets.

Let us talk about the case where there are no NRA on
the market. We can then show as previously that the effi-
cient border in the plan (standard deviation, expectation)
is a half hyperbola.

We now assume that µ̃TΩ−11 > 0. We notice that for
a given v we can find a σ s.t. a0 = 0. Let us note P̃ ∗ this
portfolio. It contains no NRA, he then is also efficient in the
case where no NRA is on the market. We then find that the
line equation of Proposition 1.2 is necessarily the tangent
equation of the hyperbola on the point P̃ ∗.

1.2.4 Sharpe ratio

Definition 1.3 (Market Sharpe ratio). We define the mar-
ket Shape ratio with the quantity:

S =
√
µ̃TΩ−1µ̃.

In the case where Ω is diagonal we have

S =

(∑N
i=1 (µi − (1 + r))

2

σ2

) 1
2

.

Definition 1.4 (Sharpe ratio). The Sharpe ratio of the
portfolio (a0,a) is:

S(a) =
E [V1(a0,a)− (1 + r)v]√

Var [V1(a0,a)]
.

Recall that E[V1(a0,a)] = a0(1 + r) + ωT
a µ and v =

a0 + ωT
a 1. And for an efficient porftolio, ωa = 1

λΩ−1µ̃ and

σ = 1
λ

(
µ̃TΩ−1µ̃

) 1
2 . Then,

S(a) =
ωT

a µ̃

(ωT
a Ωωa)

1
2

. (1.15)

Remark. S(a) is not function of a0 nor v. All efficient port-
folios have the same Sharpe ratio,

S(a) =
1

λ

µ̃TΩ−1µ̃

σ
=
(
µ̃TΩ−1µ̃

) 1
2 , (1.16)

which is the market Sharpe ratio.

Proposition 1.3. For all portfolios (a0,a), we have S(a) ≤
S. With equality for the efficient portfolios.

Proof. Let Ω ∈ S++
n , then ∃R ∈ S++

n / Ω = R2.

S(a) ,
ωT

a µ̃√
ωT

a Ωωa

=
ωT

a Ω
1
2 Ω−

1
2 µ̃√

ωT
a Ωωa

=
Tr
(

(Ω
1
2ωa)TΩ−

1
2 µ̃
)

√
ωT

a Ωωa

≤
√

Tr(ωT
a Ωωa)Tr(µ̃TΩ−1µ̃)√

ωT
a Ωωa

(CS)

≤
√
µ̃TΩ−1µ̃.

1.3 Capital Asset Pricing Model

1.3.1 Identification of the portfolio P ∗

We add the assumption Ω−1µ̃ > 0, i.e. we have a long posi-
tion on all assets. We also assume that there are I investors
on the market and they all follow the Markovitz approach.
We note λ the risk aversion of the i-th investor. We saw
that

ai =
1

λi
Diag(p0)−1Ω−1µ̃. (1.17)

Then the total supply in risky assets is:

I∑
i=1

1

λi
Diag(p0)−1Ω−1µ̃ =

1

λ̄
P ∗ , (1.18)

where λ̄ =
(∑I

i=1
1
λi

)−1

. When the market is at equilib-
rium the supply is equal to the demand ; and the assets’
prices are the parameters that lead to this equilibrium.
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Proposition 1.4. P ∗ is proportional to the “market portfo-
lio”, that is to say the portfolio containing all the risky assets
on the market. And the prices adjust themselves so that

am =
1

λ̄
Diag(p0)−1Ω−1µ̃ ,

am is the vector where its components are the amount of
equities for the i-th risky asset.

1.3.2 CAPM equation

We note z = y− (1 + r)1 the vector of net returns and z(a)
the net return of a portfolio with composition a in risky
assets.

z(a) ,
aTp1

aTp0
− (1 + r)

=
aTDiag(p0)(z + (1 + r)1)

aTDiag(p0)1
− (1 + r)

=
aTDiag(p0)z

aTDiag(p0)1
=

ωT
a z

ωT
a 1

,

and for an efficient portfolio, ωT
a ∝ Ω−1µ̃, i.e.

z(a) =
µ̃TΩ−1z

µ̃TΩ−11
. (1.19)

Lemma 1.5. Recall that with X and Y two r.v. in L2, one
can find a, b ∈ R, ε r.v. s.t. Y = a+ bX + ε, with E[ε] = 0
and Cov(X, ε) = 0.

Proof. Indeed with b := Cov(Y,X)
Var[X] , a := E[Y ] − bE[X] and

ε := Y − a− bX.

Remark. a and b are unique.

Proposition 1.6. We have the decomposition z = βz(am)+
ε, with z,β, ε ∈ RN , z(am) ∈ R and am the market portfo-
lio. The vector β is called the “beta” vector, β = Cov(z,z(am)

Var[z(am)] ,
E[ε] = 0 and Cov(ε, z(am)) = 0.

Remark. For all i ∈ J1, NK, zi = yi − (1 + r) = βiz(am) + εi
with βi = Cov(zi,z(am)

Var[z(am)] .

Proof.

Corollary. We have for all i ∈ J1, NK,

E[zi] = βiE[z(am)] ; (1.20)
Var[zi] = β2

i Var[z(am)] + σ2
i . (1.21)

With am the market pottfolio and σ2
i = Var[εi].

1.3.3 Comments

We can see that the expectation of return just depends of
the Beta and the expected return of the market portfolio.

In (1.21) we call β2
i Var[z(am)] the systemic risk and σ2

i

the idiosyncratic risk, which is uncorrelated from the econ-
omy.

We say that the idiosyncratic risk can be diversified, con-
trary to the systemic risk. Indeed let us consider the port-
folio of composition a in risky assets, then z(a) =

ωT
a z

ωT
a 1 , and

with what we saw previously,

z(a) =
ωT

a βz(a
∗
m)

ωT
a 1

+
ωT

a ε

ωT
a 1

= β(a)z(a∗m) + ε(a).

The Beta of a portfolio is the weighted average of the Beta
of different assets. Then,

E[z(a)] = β(a)E[z(a∗m)] ;

Var[z(a)] = β2(a)Var[z(a∗m)] + Var[ε(a)]

= β2(a)Var[z(a∗m)] + ω̄T
a Var[ε]ω̄a ,

where ω̄a =
ωT

a

ωT
a 1 . So if one wants to reduce the risk of the

first member by reducing β(a) but then one reduces also the
expected return. We say that the systemic risk cannot be
diversified.

On the other hand, if there is a lot of different assets in
the portfolio, the idiosyncratic risk will be low. Indeed, con-
sider2 to simplify that Var[ε] = σ2IN and for all i ∈ J1, NK,
ω̄a,i = 1

N ,

ω̄T
a Var[ε]ω̄a =

N∑
i=1

ω̄2
a,iσ

2

=
σ2

N
−−−−→
N→∞

0.

The graph which represents the (β(a), µ̃(a)) is a line
where the coefficient is the expected return of the market
portfolio. We call it the “security market line”, which should
not be mixed up with “capital market line”3.

One can show that the rank of Σ := Var[ε] is N − 1 and

Σ = Ω −
Ωωa∗

m
ωT

a∗
m

Ω

ωT
a∗
m

Ωωa∗
m

.

1.3.4 Markovitz and CAPM in practice

To use the previous approaches we have to estimate µ and
Ω. Assume that the returns are iid and we observe them on
n periods, so we have the data (yt)1≤t≤n,

µ = E[yt] ;

Ω = Var[yt].

2We will see later that it is in fact impossible.
3This is the name of the efficient border.
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The estimators associated to the empirical moments are,

µ̂n =
1

n

n∑
i=1

yt ;

Ω̂n =
1

n

n∑
i=1

(yt − µ̂n)(yt − µ̂n)T.

Proposition 1.7. We have µ̂n
a.s.−−−−→
n→∞

µ and Ω̂n
a.s.−−−−→
n→∞

Ω

with the speed
√
n.

In fact Ω̂n is a very noisy estimator and its use can have
catastrophic consequences in term of risk. In practice we use
the following recipe. First we prefer to work on the empirical
correlation matrix E. We can write it as,

E =

N∑
k=1

λkV
k(Vk)T ,

with λ1 ≤ · · · ≤ λN the eigenvalues and Vk the eigenvectors
associated. We would like to apply the following procedure:

λkclean =

{
a for k > k∗

λk for k ≤ k∗

E =

k∗∑
k=1

λkV
k(Vk)T + aIN .

This comes from the PCA method, we keep the significant
values of eigenvalues and replace the others with a constant
to keep the trace. Now the question is how to choose k∗ ?

Theorem 1.8. Assume that n → ∞, N → ∞ s.t. N
n =

Q < 1 constant. Assume that En the empirical correlation
matrix of iid returns and the theoretical correlation matrix
of returns is IN . So a.s. the convergence of the empirical
measure associated to the eigenvalues of En goes towards the
Marčenko–Pastur distribution:

ρ(λ) =
1

2π

√
(λ+ − λ)(λ− λ−)

λ
,

where λ− < λ < λ+, λ+ := (1+
√
Q)2 and λ− := (1−

√
Q)2.

So in practice we will keep the eigenvalues greater than
λ+, indeed even in the case where there is no information, a
statistical effect makes that eigenvalues are computes in the
range [λ−, λ+].

One can also estimate the parameters of the CAPM. For
each risky asset we have the regression

zi,t = αi + βizi,t(a
∗
m) + εi,t.

And with the hypothesis of iid returns we are in the frame
of least square regression, so we can estimate αi and βi ;
and test the nullity of αi.

However, the CAPM theory being valid for all the risky
assets, it is natural to consider the piled regressions

z1,1 = α1 + β1z1(a∗m) + ε1,1

...
zN,1 = αN + βNz1(a∗m) + εN,1

z1,2 = α1 + β1z2(a∗m) + ε1,2

...

where the first subscript correspond to the i-th asset and
the second to the time. In this case we have εi,tk ⊥⊥ εj,tl for
tk 6= tl, but E[εi,tεj,t] 6= 0, hence Var[ε] 6= σIN . It is then
desirable to use the GLS4 method or the QGLS5 method
instead of the OLS.

But for this structure, as the variable always depends of
the market portfolio, one can show that the OLS estimator
is the same as the GLS and we have

α̂n = µ̂− β̂nµ̂n(a∗m) ;

β̂n =
1
n

∑n
t=1(zt − µ̂n)(zt(a

∗
m)− µ̂n(a∗m))

σ̂2
n(a∗m)

,

where µ̂n = 1
n

∑n
t=1 zt, µ̂n(a∗m) = 1

n

∑n
t=1 zt(a

∗
m) and

σ̂2
n(a∗m) = 1

n

∑n
t=1(zt(a

∗
m)− µ̂n(a∗m))2.

We can also estimate Σ = Var[ε], and we can show that

√
n

(
α̂n − α
β̂n − β

)
L−−−−→

n→∞
N

( 0
0

)
,

 1 +
µ2(a∗

m)
σ2(a∗

m) −µ
2(a∗

m)
σ2(a∗

m)

−µ
2(a∗

m)
σ2(a∗

m)
1

σ2(a∗
m)Σ

 .

Recall that if Yn
L−→ Y with Y ∼ (0,Σ), σ ∈ S++

K , then

Y T
n Σ−1Y

L−→ χ2(K).

So we have in our case(
1 +

µ2(a∗m)

σ2(a∗m)

)−1

nαT
n Σ̂∗nα̂n

L−→ χ2(N − 1) ,

where Σ̂∗n is the generalized inverse of Σ as it is non in-
versible (A∗ is the generalized inverse if AA∗A = A). We
can easily show that Ω−1 is a generalized inverse of Σ.

2 Linear regression beyond OLS

2.1 The model

We consider the model

Y = Xθ + ξ ,

4Generalized Least Squares.
5Quasi-Generalized Least Squares.
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where Y, ξ ∈ Rn, θ ∈ Rp and X ∈ Mn,p(R). And
E[ξ|X] = 0, Var[ξ] = σ2In. We observe (X,Y), and the
OLS estimator of θ is

θ̂ = (XTX)−1XTY.

Theorem 2.1 (Gauss–Markov). The OLS estimator has the
minimal variance in the set of unbiased estimator.

2.2 Limits of the OLS
The first problem is that this estimator favours the bias
rather than the variance, which could be a problem.

The OLS doesn’t compute null coefficients, there is no
variable selection, so the interpretation is difficult.

We need to have XTX inversible and so n ≥ p.

To correct the last point we could e.g. reject the coef-
ficient that has the highest p-value according to its nullity
test, then compute again the regression etc. until the dis-
tance ‖Y −Xθ̂p−k‖22 is not stable anymore.

2.3 Ridge regression
The Ridge regression allows us to correct the points 1 and
3 previously detected. The idea is to penalize the distance
of OLS and minimize

F (θ) := ‖Y −Xθ‖22 + λ‖θ‖22.

When λ→ 0 we have θ̂R = θ̂OLS , and when λ→∞ we have
θ̂R = 0. We can show that

∇F (θ) = −2XT(Y −Xθ) + 2λIpθ ,

so the theta that minimizes this distance is

θ̂R = (XTX + λIp)
−1XTY.

We have the properties

E[θ̂R] = (XTX + λIp)
−1XTXθ

Var[θ̂R] = σ2(XTX + λIp)
−1XTX(XTX + λIp)

−1

Let us now compare θ̂R and θ̂OLS with p = 1: θ̂R =(
‖x‖2 + λ

)−1
XTY and θ̂OLS =

(
‖x‖2

)−1
XTY . So we have

θ̂R =

(
‖x‖2 − λ

)−1

(‖x‖2)
−1︸ ︷︷ ︸

=:c(λ)

θ̂OLS .

Let us see the quadratic error:

E
[
(θ̂R − θ)2

]
= Var[θ̂R] +

(
E[θ̂R]− θ

)2

= c(λ)2Var[θ̂OLS ] + ((c(λ)− 1)θ)
2

= c2
(

Var[θ̂OLS ] + θ2
)
− 2cθ2 + θ2

which is a parabole in c that reaches its minimum in
θ2

Var[θ̂OLS ]+θ2
and its value in c = 1 is Var[θ̂MCO]. We can

then improve the OLS estimator in the sense of the quadratic
error.

The problem is how to choose λ when λopt is a function
of θ which we don’t know. In practice we use the cross val-
idation. We divise the data in K sets of equal size, and for
each k ∈ J1,KK we compute θ̂−k(λ) on all datas except those
of the k-th set. Then we compute the error on the set k:

ελk :=
1

Card(k-th set)

∑
(Yj ,Xj)∈k

(
Yj −XJ θ̂−k(λ)

)2

.

The total error is the average over all the k-th sets: ελ :=
1
K

∑K
k=1 ε

λ
k . And we choose the λ that minimizes this error.

2.4 The LASSO regression (Least Absolute
Shrinkage and Selection Operator)

2.4.1 Definition

The only difference with the Ridge regression is that we re-
place the norme L2 with the norm L1:

β̂L = min
β
‖Y −Xβ‖22 + λ

p∑
j=1

|βj |.

This is equivalent to

min
β
‖Y −Xβ‖22

u.c.

p∑
j=1

|βj | ≤ t.

2.4.2 Interest

In big dimension we usually are looking for sparse solutions
i.e. with a lot of null coefficient. The idea would be to solde

min
β
‖Y −Xβ‖22

u.c.

p∑
j=1

|βj |0 ≤ t ,

where the norme L0 counts the number of non-zero coeffi-
cients. The problem is that the complexity of this is “NP
hard”. So we replace this norm with the norm Lq with q = 1,
which is the smallest q for which the constraint region is con-
vex.

3 Principal Component Analysis
(PCA)

The goal here is to find a pertinent representation of a scat-
ter plot that are originally in huge dimension.
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3.1 Datas
We have a table of n rows and p columns. In row (x1

i , . . . , x
p
i )

is the individual variable i, while in column (xj1, . . . , x
j
n) is

the variable j.
In our example the individual variables are trading days

and variables are the returns of assets. In general we work
with the centred and normalized variables:

xji =
xji − x̄j√

1
n

∑n
i=1(xji − x̄j)2

,

where x̄j = 1
p

∑p
l=1 x

j
l .

3.2 Space of variables
Let us consider a distance between individuals, typically the
euclidean distance:

d2(xi, xj) = ‖xi − xj‖2

=

p∑
k=1

(xki − xkj ).

And we have x̄k = 0 for k ∈ J1, pK, so the center of mass of
the scatter plot is ~0.

Definition 3.1 (Inertia). We call inertia of the scatter the
dispersion around the center of mass, in the non-normalized
case

I =
1

n

n∑
i=1

d2(~0, xi).

The bigger I is, the more points are dispersed.

I =
1

n

n∑
i=1

p∑
j=1

(
xji

)2

=

p∑
j=1

1

n

n∑
i=1

(
xji

)2

︸ ︷︷ ︸
=1 in our case

= p = Tr(V ).

Where V is the empirical variance matrix between the vari-
ables.

The inertia carried buy a linear subspace F is defined by

IF =
1

n

n∑
i=1

d2(PFxi,~0)

with PFxi the orthogonal projection of xi on F .
In the case of a subspace of dimension 1, where the span

vector is ~u with ‖~u‖ = 1,

PFxi = 〈u, xi〉~u

and I~u = 1
n

∑n
i=1〈u, xi〉2.

3.3 PCA
We are looking for the subspace that Fk of dimension k < p
s.t. after projection the scatter is as least deformed as we
can.

Theorem 3.1. Le subspace Fk that caters the highest in-
ertia is spanned by the eigenvectors ~v1, . . . , ~vk associated to
the eigenvalues λ1 < · · · < λk. And this inertia is

∑k
j=1 λj.

Proof. We are looking for the svs6 Fk of dimension k < p
s.t. after projection the scatter is as less skewed as we can.
The projection is decreasing the distance between individual
variables, so we are looking for the svs Fk which maximizes

n∑
i=1

n∑
l=1

d2(PFkxi, PFkxl)

=

n∑
i=1

n∑
l=1

p∑
j=1

(
(PFkxi)

j
)2

+
(
(PFkxl)

j
)2

= 2n2IFk .

So we are looking for the svs that carries the biggest inertia.
Let us assume that we know Fk, so which is Fk+1 ? Let

Ek+1 be of dimension k + 1, dimF⊥k = p− k and

dim(Ek=1 + F⊥k )︸ ︷︷ ︸
≤p

= dimEk+1 + dimF⊥k︸ ︷︷ ︸
=p+1

−dimEk+1 ∩ F⊥k ,

and so dimEk+1 ∩ F⊥k ≥ 1. Let now v ∈ Ek+1 ∩ F⊥k . We
can write Ek+1 = v ⊕G, with G orthogonal complement of
v in Ek+1. So dimG = k.
Let F̃k+1 = Fk ⊕ v. As v ⊥ V and v ⊥ Fk,

IEk+1
= IG + Iv ;

IF̃k+1
= IFk + Iv.

By definition IFk ≥ IG so ∀Ek+1, IEk+1
≤ IF̃k+1

if we choose
v s.t. Iv is maximal. And so Fk+1 is the orthogonal sum
of Fk and v with v the axis orthogonal to Fk of maximum
inertia.

To find a space Fk we can then look for the axis one after
the other.

Let us now look for the axis that carries the maximal
inertia. The inertia carried by an axis ∆u of director vector
~u is

1

n

n∑
i=1

〈xi, u〉2 =
1

n

n∑
i=1

(xT
i u)2

=
1

n

n∑
i=1

uTxix
T
i u

= uT

(
1

n

n∑
i=1

xix
T
i

)
u

= uTV u.

6Sub-vector spaces.
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We will then maximize uTV u under the constraint uTu = 1.
We have V = PDPT, with D = diag(λ1, . . . , λp), with
λ1 ≥ · · · ≥ λp. P is the orthogonal matrix that contains
the eigenvectors of V , (vj) with ‖vj = 1.

PTu =

 〈u, v1〉
...

〈u, vp〉



uTV u =

p∑
j=1

λj〈u, vj〉2

≤ λ1

p∑
j=1

〈u, vj〉2 = λ1.

We then choose ~u = v1 that maximizes the inertia (λ1 in
this case). For the next axis we are looking for ~u ⊥ v1 that
maximizes

p∑
j=2

λj〈u, vj〉2 ≤ λ2.

So we choose ~u = v2.
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Part II

4 Modeling high frequency data

4.1 Introduction

The need for models in the derivatives world comes from
the problem of pricing and hedging. At the macroscopic
scale, for example if we consider one data per day over one
year, prices trajectories look like sample paths of models
classically used in mathematical finance such as Brownian
motion, diffusions, stochastic volatility models

At the microscopic scale, prices are very different from
Brownian type sample paths.

Figure 1: Bund, one hour, one data every second

Essentially, a model is good if it reasonably reproduces
the stylized facts of the main quantities of interest and,
mostly, if it is useful for market practitioners.

4.2 A first approach

We distinguish four levels of resolution for modeling
“through scales”. A good probabilistic/statistical model
should provide reasonable dynamics across these levels.

L0 The ultimate level of the order book. One proposes
a complex stochastic system in continuous time with
discrete values in an appropriate state space which de-
scribes all the events of a limit order book.

L1 The ultra high frequency level for the price. At this
level, one wishes to model all transaction prices and
durations between these transactions.

L2 At an intermediate high frequency level. Here one does
not focus on durations but essentially on the price,
regularly sampled, for example every second or every
minute.

L3 The macroscopic level, where the price is viewed as a
continuous semi-martingale. It is the dominant and
historical approach.

Remark. We will essentially focus on price models here and
so only consider levels L1, L2, L3. When is the model valid
? For 5 minutes sampling ? 1 minute sampling ? 1 second
sampling ?

Another issue is the question of the modeled price. Is it
the last traded ? mid-quote ? best bid ? best ask ? Volume
Weighted Average Price ?

4.2.1 From the large scales to the fine scales

It is well known that the no free lunch assumption is essen-
tially only compatible with semi-martingale type dynamics
for the price. But various empirical study have shown that
over short time periods (order of magnitude of an hour or a
day), it is not reasonable to see price observations as obser-
vations of a continuous semi-martingale.

Definition 4.1 (Signature plot). Assume we have price ob-
servations Pt at times t = i

n , n ∈ N, i = 0, . . . , n, where
t = 1 represents for example one trading day. The signature
plot is the function which to k = 1, . . . , n associates

RVn(k) =

bnk c−1∑
i=0

(
Pk i+1

n
− Pk in

)2

If Pt is a continuous semi-martingale, as soon as n
k is

large enough, RVn(k) is close to the quadratic variation of
the semi-martingale. However, in practice, RVn(k) is very
often a decreasing functional, stabilizing for sampling pe-
riods larger than 10 minutes (depending on the asset of
course).

Figure 2: Signature plot for Bund contract

It is clear that high frequency prices time series are not
of the same nature as low frequency series. The goal of the
coarse to fine approach to microstructure is the following
: reconcile these different behaviours across scales starting
from the coarse scale, that is the scale where a continuous
semi-martingale type dynamics is a relevant model. More
precisely, one starts from a continuous semi-martingale,
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called efficient (latent) price, and apply a stochastic mech-
anism to it in order to derive the observed prices at higher
frequencies.

4.2.2 L3 to L2 models

Additive microstructure noise models In the coarse
to fine approach, one can consider the widely used notion
of microstructure noise. This noise is defined for all t where
the model price exists by

εt = lnPt − lnXt ,

where Pt is the model price at time t and Xt is the semi-
martingale used in order to build the model. In the so called
additive microstructure noise approach, one focuses on mod-
eling the process εt.

Some simple considerations enable us to deduce some
suitable properties of the observed price and the microstruc-
ture noise at level L1:

(i) Observed prices are discrete. Indeed, market prices
usually stay on a tick grid. This is not compatible
with data from a continuous semi-martingale observed
at exogenous times. Therefore, in this approach, this
is a “reason” for the presence of microstructure noise.

(ii) For many assets, there are quick oscillations of
the transaction prices between two values (“bid-ask
bounce”).

Since (Pt)t is a jump process so that the number of jumps
is finite over every bounded time interval, we deduce that

(iii) (lnPt)t is almost surely finite.

Additive microstructure noise models are very conve-
nient to carry on computations, see later, and are often rea-
sonable when considering sampling scales larger than about
5 minutes. However, they do not satisfy any of the proper-
ties (i), (ii), (iii) and the durations are not modeled. Con-
sequently, they cannot be extended to level L1.

Rounding models Rounding models are a simple way
to accommodate properties (i), (ii), (iii) and the assump-
tion of an underlying semi-martingale efficient price. In this
model, the efficient price is modeled by a continuous semi-
martingale Xt and the observed prices are given by the sam-
ple (

X
(αn)
i
n

:= αn

⌊
X i

n

αn

⌋
, i = 0, . . . , n

)
,

with rounding error αn, corresponding to the tick size.
Hence, compare to additive microstructure noise mod-

els, rounding models have several nice properties. However,
the main drawback of these models is that, as additive mi-
crostructure noise models, they remain L3 → L2 models
and cannot be extended to level L1: Assume that for any

time t the observed price is given by the rounding value of a
semi-martingale. This leads to an observed price with an in-
finite number of jumps on a finite interval, which is of course
hardly acceptable.

4.2.3 L3 to L1 models

It appears that several drawbacks are inherent to L3 → L2
models. Let us summarize the suitable properties for a L3
→ L1 model:

• A continuous semi-martingale type behaviour at large
sampling scales.

• Model for prices and durations (in particular, no no-
tion of sampling frequency is required).

• A clear definition of the price.

• Discrete prices.

• Bid-Ask bounce.

• Usual stylized facts of returns, durations and volatility
(in a loose sense here). In particular, inverse relation
between durations and volatility.

• An interpretation of the model.

• Finite quadratic variation for the price.

• A testable model.

• A useful model, for example for building statistical
procedures.

4.2.4 Fine to coarse models (L1 to L3)

5 Optimal portfolio liquidation

5.1 Introduction

We want to sell a large quantity of a stock (or of several
stocks) in one day. How to choose a good way to split this
large order in time and volume ?

There are two extreme strategies:

• Sell everything right now, hence huge transaction cost
since we need to “eat” a lot in the order book. However
this cost is known.

• Sell regularly in the day small amounts of assets, so
small transaction costs (volumes are much smaller)
but the final profit is unknown because of the daily
price fluctuations: volatility risk.

We need to optimize between transaction costs and
volatility risk. To do so, we use the Almgren and Chriss
framework which takes into account the market impact phe-
nomenon and emphasizes the importance of having good
statistical estimators of market parameters.
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5.2 Almgren and Chriss model
5.2.1 Setup

We consider we are selling one asset, we have X shares of
this assets at t0 = 0, everything has to be sold at t = T .
The interval [0, T ] is split into N intervals of length τ = T

N
and set tk = kτ , k ∈ J0, NK. A trading strategy is a vector
(x0, ·, xN ), with xk the number of shares we still have at
time tk.

So x0 = X, xN = 0 and nk = xk−1 − xk is the number
of assets sold between tk−1 and tk (and not exactly at time
tk−1 or tk), decided at time tk−1.

5.2.2 Market impacts

Permanent impact component. Intuitively market
participants see us selling large quantities, thus they revise
their prices down. Therefore, the “equilibrium price” of the
asset is modified in a permanent way. Let Sk be be equilib-
rium price at time tk:

Sk = Sk−1 + σ
√
τξk + τg

(nk
τ

)
,

with ξk i.i.d. r.v. ∼ N (0, 1).

Temporary impact component. This effect is due to
the transaction costs: we are liquidity taker since we con-
sume the liquidity available in the order book. If we sell a
large amount of shares, our price per share is significantly
worse than when selling only one share. We assume this ef-
fect is temporary and the liquidity comes back after each pe-
riod. Let S̃k = 1

nk

∑
nk,ipi, with nk,i the number of shares

sold at price pi between tk−1 and tk. We set

S̃k = Sk−1 − h
(nk
τ

)
.

PnL. The result of the sell of the asset is
N∑
k=1

nkS̃k = XS0 +

N∑
k=1

xk

(
σ
√
Tξk − τg

(nk
τ

))
−

N∑
k=1

nkh
(nk
τ

)
.

The trading cost C := XS0 −
∑N
k=1 nkS̃k is equal to the

addition of:

• the volatility cost

• the permanent impact cost

• the temporary impact cost.

Consider a static strategy (fully known in t0), which is
in fact optimal in this framework. We have

E[C] = τ

N∑
k=1

xkg
(nk
τ

)
+

N∑
k=1

nkh
(nk
τ

)
;

Var[C] = σ2τ

N∑
k=1

x2
k.

In order to build optimal trading trajectories, we will look
for strategies minimizing

E[C] + λVar[C] ,

with λ a risk aversion parameter.

5.3 Naive strategies

5.3.1 Assumptions

We assume that the permanent impact is linear: g(v) = γv.
If we sell n shares, the price per share decreases by γn, thus

Sk = S0 + σ
√
τ

k∑
j=1

ξj − γ(X − xk).

Moreover, in E[C], the permanent impact component satis-
fies

τ

N∑
k=1

xkg
(nk
τ

)
= γ

N∑
k=1

xk(xk−1 − xk)

=
1

2
γX2 − 1

2
γ

N∑
k=1

n2
k.

On the other hand we assume affine temporary impact:
h
(
nk
τ

)
= ε+ η nkτ . Where ε represents a fixed cost: fees and

bid ask spread. Let η̃ := η − 1
2γτ , we get

E[C] =
1

2
γX2 + εX +

η̃

τ

N∑
k=1

n2
k.

5.3.2 Two strategies

Regular liquidation. We take nk = X
N , xk = (N − k)XN ,

k ∈ J1, NK. And so,

E[C] =
1

2
γX2 + εX + η̃

X2

T
;

Var[C] =
σ2

3
X2T

(
1− 1

N

)(
1− 1

2N

)
.

We can show this strategy has the smallest expectation.
However the variance can be very big if T is large.

Immediate selling. We take n1 = X, n2 = · · · = nN = 0,
x1 = · · · = xN = 0, and we get

E[C] = εX +
ηX2

τ
;

Var[C] = 0.

This strategy has the smallest variance. However, if τ is
small, the expectation can be very large.
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5.4 Optimal strategies
The trader wants to minimize

U(C) = E[C] + λVar[C]

=
1

2
γX2 + εX +

η̃

τ

N∑
k=1

(xk−1 − xk)2

+ λσ2τ

N∑
k=1

x2
k.

For j ∈ J1, N − 1K,

∂U

∂xj
= 2τ

(
λσ2xj − η̃

xj−1 − 2xj + xj+1

τ2

)
,

then

∂U

∂xj
= 0

⇔ xj−1 − 2xj + xj+1

τ2
= K̃xj ,

with K̃ = λσ
2

η̃ . It is shown that the solution can be written
x0 = X and for j ∈ J1, NK:

xj =
sinhK(T − tj)

sinhKT
X ;

nj =
2 sinh Kτ

2

sinhKT
cosh

(
K
(
T − jτ +

τ

2

))
X ,

where K satisfies

2

τ2
(coshKτ − 1) = K̃.

If λ = 0, then K̃ = K = 0 and so nj = τ
T = X

N . We retrieve
the strategy with minimal expected cost.

Figure 3: Optimal trajectory for a single-asset portfolio –
green: λ = 10−5, red: λ = 2 · 10−6, black: λ = 10−7.

Remark. Few remarks:

• It is easy to show that the solution is time homoge-
nous: if we compute the optimal strategy in tk, we
obtain the values between tk and T of the optimal
strategy computed in t0.

• In this approach, we obtain an efficient frontier of trad-
ing.

• The optimal trajectories are very sensitive to the
volatility parameter. It is therefore important to ob-
tain accurate volatility estimates.

• The Almgren and Chriss framework can be extended
in dimension n (if we sell several assets). In that case,
correlation parameters come into the picture.

Only the total quantities which have to be executed in
each time window are provided by the Almgren–Chriss ap-
proach. The way to deal with them inside each window (the
trading tactic) is an intricate issue : Should we use mar-
ket orders only or a combination with limit orders ? When
should we trade inside each window ?

6 Model with uncertainty zones and
statistical procedures for volatil-
ity, correlation and lead-lag

6.1 Modelling ultra high frequency data

We want the following properties for our model:

• Model for prices and durations, i.e. no hesitation
about the sampling frequency.

• Discrete prices.

• Bid-Ask bounce.

• Stylized facts of returns, durations and volatility.
In particular, inverse relation between durations and
volatility.

• A diffusive behaviour at large sampling scales.

• No hesitation about the price.

• Finite quadratic variation for the microstructure noise.

• An interpretation of the model.

• A useful model.

The proposed answer is the model called model with un-
certainty zones. In this model, prices and durations are
functionals of some hitting times of an underlying continu-
ous semi-martingale.
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6.2 Model with uncertainty zones

The added value of this model is to use the aversion for
price changes. Indeed in an idealistic framework, transac-
tions would occur when the efficient price crosses the tick
grid. In practice, uncertainty about the efficient price and
aversion for price changes of market participants. The price
changes only when market participants are convinced that
the efficient price is far from the last traded price. We in-
troduce a parameter η quantifying this aversion for price
changes.

We will use the following notations:

• Xt: efficient price.

• α: tick size.

• ti: time of the i-th transaction with price change.

• Pti : transaction price at time ti.

• Li :=
|Pti+1

−Pti |
α : size of the i-th price jump.

• Uk := [0,∞[×]dk, uk[: uncertainty zones with

dk =

(
k +

1

2
− η
)
α ;

uk =

(
k +

1

2
+ η

)
α.

• τi: i-th exit time of an uncertainty zone.

We give the graphical use of the model

Figure 4: Model with uncertainty zones

The model is good according to the the criterias we gave
earlier. Let us say few words about η the only parameter
of the model. It quantifies the aversion for price changes
(with respect to the tick size) of market participants. In the
UHF, the order book can not “follow” the efficient price and
is reluctant to price changes. Reluctancy measured by η.
2ηα represents the implicit spread of a large tick asset (see
later). A small η (< 1

2 ) means that for market participants,
the tick size is too big and conversely.

6.3 Volatility estimation
We recall the efficient price and its estimator writes

Xτi = Pti − α

(
1

2
− η
)

sgn(Pti − Pti−1
) ;

X̂τi = Pti − α

(
1

2
− η̂
)

sgn(Pti − Pti−1).

Let Nα,t = Card{ti, ti ≤ t} and define

N
(c)
α,t =

Nα,t∑
i=1

1{|Xτi−Xτi−1
|=α} ;

N
(a)
α,t =

Nα,t∑
i=1

1{|Xτi−Xτi−1
|=2ηα}.

And then the natural estimator

η̂t :=
1

2

N
(c)
α,t

N
(a)
α,t

.

Theorem 6.1. Let

R̂Vt =

Nα,t∑
i=1

(
ln X̂τi − ln X̂τi−1

)2

,

we have

α−1
(

R̂Vt − RVt

)
L−→ γt

∫ t

0

vu dWθu

where W is a Brownian motion independent of B and θu,
vu and γu depend on Xu, σu and explanatory variables, in-
volving for example the order book.

6.4 Covariation estimation
We now consider two assets,

d lnXt = µXt dt + σXt− dWt ;

d lnYt = µYt dt + σYt− dBt ,

with

d〈W,B〉t = ρt dt.

We want to estimate
∫ t

0
ρtσ

X
t σ

Y
t dt. And we will face two

main difficulties:

• asynchronicity of the data,

• microstructure effects.

We start with the usual case without asynchronicity or
microstructure effects. We observe (X i

n
, Y i

n
), i ∈ J0, nK. Let

∆n
i X := lnX i

n
− lnX i−1

n
.

An estimator of
∫ t

0
ρtσ

X
t σ

Y
t dt with accuracy n−

1
2 is

ĉn :=

n∑
i=1

∆n
i X∆n

i Y.
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Very often, traders like to think in term of correlation.
When the correlation and volatility parameters are supposed
to be constant, an estimator of ρ with accuracy n−

1
2 is given

by

ĉn√∑n
i=1(∆n

i X)2
√∑n

i=1(∆n
i Y )2

Proposition 6.2. In the case where the volatility parame-
ters are no longer constant, one can consider

ρ̂n =
2

π

ĉn
ân

,

with

ân :=

n−1∑
i=1

∆n
i+1X∆n

i Y.

Indeed, ân is an estimator of 2
π

∫ 1

0
σXs σ

Y
s ds.

Proof. We note that

ân ≈
n−1∑
i=1

σXi−1
n

σYi−1
n

∣∣∣W i+1
n
−W i

n

∣∣∣ ∣∣∣B i
n
−B i−1

n

∣∣∣ ,
with the Brownian increments in the preceding sum being
independent.

ân has the same limit as

n−1∑
i=1

E
[
σXi−1

n

σYi−1
n

∣∣∣W i+1
n
−W i

n

∣∣∣ ∣∣∣B i
n
−B i−1

n

∣∣∣∣∣∣F i
n

]
=

n−1∑
i=1

σXi−1
n

σYi−1
n

∣∣∣B i
n
−B i−1

n

∣∣∣E [∣∣∣W i+1
n
−W i

n

∣∣∣]
=

√
2

n

1√
n

n−1∑
i=1

σXi−1
n

σYi−1
n

∣∣∣B i
n
−B i−1

n

∣∣∣ .
This last term has the same limit as√

2

n

1√
n

n−1∑
i=1

σXi−1
n

σYi−1
n

E
[∣∣∣B i

n
−B i−1

n

∣∣∣]
=

2

n

1

n

n−1∑
i=1

σXi−1
n

σYi−1
n

−→ 2

π

∫ 1

0

σXs σ
Y
s ds.

6.4.1 Hayashi–Yoshida Estimator

Assume now we observe X at times (TX,i) and Y at times
(TY,i). We build

X̄t := XTX,i for t ∈ [TX,i, TX,i+1[ ;

Ȳt := YTY,i for t ∈ [TY,i, TY,i+1[.

For given h, the previous tick covariation estimator is

Vh =

m∑
i=1

(
ln X̄ih − ln X̄(i−1)h

) (
ln Ȳih − ln Ȳ(i−1)h

)
.

But in fact with the Epps effect there is a systematic bias
for this estimator.

Definition 6.1 (Hayashi–Yoshida estimator). Let IXi :=
]TX,i, TX,i+1], and IYi :=]TY,i, TY,i+1]. The Hayashi–
Yoshida estimator is

Un =
∑
i,j

∆X(IXi )∆Y (IYj )1{IXi ∩IYj 6=∅}.

Theorem 6.3. In the model with uncertainty zones, the
Hayashi–Yoshida estimator is a consistent estimator of the
covariation provided one uses the estimated values of the ef-
ficient prices.

6.5 Lead-Lag estimation
The motivation comes from the observations from practi-
tioners in finance, some assets are leading some other assets.
This means that a “lagger” asset may partially reproduce the
behaviour of a “leader” asset. This common behaviour is un-
likely to be instantaneous. It is subject to some time delay
called “lead-lag”.

We will work on a Bachelier model, for t ∈ [0, 1], and
(B(1), B(2)) such that 〈B(1), B(2)〉t = ρt, set

Xt := x0 + σ1B
(1)
t ;

Ỹt := y0 + σ2B
(2)
t .

Define Yt := Ỹt−θ, t ∈ [θ, 1]. Our lead-lag model is given by
the bidimensional process (Xt, Yt). We have{

Xt = x0 + σ1B
(1)
t ;

Yt = y0 + ρσ2B
(1)
t−θ + σ2

√
1− ρ2Wt−θ.

Assume the data arrive at regular and synchronous time
stamps in the Bachelier model, i.e. we have data

(X0, Y0), (X∆n
, Y∆n

), (X2∆n
, Y2∆n

), . . . , (X1, Y1)

and suppose θ = k0∆n, k0 ∈ Z. Let

Cn(k) :=
∑
i

(
Xi∆n −X(i−1)∆n

) (
Y(i+k)∆n

− Y(i+k−1)∆n

)
.

Heuristically we have

Cn(k) ≈ ∆−1
n E

[
(X· −X·−∆n

)(Y·+k∆n
− Y·+(k−1)∆n

)
]

+ ∆
1
2
n ξ

n.

Moreover

∆−1
n E

[
(X· −X·−∆n)(Y·+k∆n − Y·+(k−1)∆n

)
]

=

{
0 if k 6= k0

ρσ1σ2 if k = k0.
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Thus we can (asymptotically) detect the value k0 that de-
fines θ in the very special case θ = k0∆n by maximizing in
k the contrast sequence |Cn(k)|.

We set

Un =
∑
i,j

∆X(IXi )∆Y ((IYj )−θ)1{IXi ∩(IYj )−θ 6=∅} ,

with (IYj )−θ =]TY,j − θ, TY,j+1 − θ]. Then θ̂n is defined as
the solution of

|Un(θ̂n)| = max
θ∈Gn

|Un(θ)|

where Gn is a sufficiently fine grid.

Theorem 6.4. As n→∞,

v−1
n

(
θ̂n − θ

)
−→ 0 ,

in probability, on the event
{
〈Xc, Ỹ c〉T 6= 0

}
.

7 Tick values and regulation

7.1 Tick value, tick size and spread

7.1.1 Settings

The tick value is smallest price increment. In practice the
tick value is given little consideration. What is important
is the tick size, it qualifies the traders’ aversion to price
movements of one tick. Notion of tick size is ambiguous in
general. However, we can identify large tick assets.

Definition 7.1. Large tick stocks are such that the bid-ask
spread is almost always equal to one tick, while small tick
stocks have spreads that are typically a few ticks.

So for small tick assets spread is a good proxy for the
stick size, but for large tick assets, how can we quantify the
tick size ?

7.1.2 Madhavan, Richardson, Roomans economic
model

Let pi+1 be the ex post true or efficient price after the i-th
trade (all transactions have the same volume), and εi: sign
of the i-th trade. The MRR model is defined by:

pi+1 − pi = ξi + θεi ,

with ξi an independent centred shock component (new infor-
mation, etc.) with variance v2. Market makers cannot guess
the surprise of the next trade. So, they post (pre trade) bid
and ask prices ai and bi given by

ai = pi + θ + φ ;

bi = pi − θ − φ ,

with φ an extra compensation claimed by market makers,
covering processing costs and the shock component risk. We
can compute several quantities, the spread

S := a − b

= 2(θ − φ) ,

the variance per trade of the efficient price

σ2
1 , E

[
(pi+1 − pi)2

]
= θ2 + v2

∼ θ2.

Therefore

S ∼ 2σ1 + 2φ.

7.1.3 Market making strategy

Wyart et al.: consider a simple market making strategy. Its
average P&L per trade is

P&L =
S

2
− c

2
σ1 ,

with c depending on the assets but of order 1. Moreover,
market makers’ P&L = 0 (if not so, another market maker
comes with a slightly tighter spread), hence

S ∼ cσ1.

7.2 The model with uncertainty zones

Recall this model from Section 6.2.
Now we can interpret η, it has a direct link with the

distribution of high frequency tick returns. Indeed for ex-
ample if η small, the uncertainty zone is small, then there is
a strong mean reversion in the observed price, so the signa-
ture plot is decreasing, significant ACV of tick returns, and
so finally the tick size is large. We have the opposite for
η ∼ 1

2 .
The distance between Ask Zone and Bid Zone is 2ηα.

It represents an implicit unobservable spread. Wit M the
total number of trades (null returns and not), can we extend
S
2 ∼

σ√
M
, to ηα ∼ σ√

M
?

7.3 Implicit spread and volatility per trade

We want to investigate the relationship

ηα ∼ σ√
M

+ φ

for large tick assets.
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Figure 5: Cloud (ηα
√
M,σ), for each day, for each asset

Note that φ includes operational costs and inventory con-
trol, then we write φ = kS. And we test the daily regression

σ = p1ηα
√
M + p2S

√
M + p3

Figure 6: Results of the regression

We can find the result with a cost analysis. Indeed the
average ex post cost of a market order is

α

2
− ηα.

On the other hand, the average P&L per trade of the mar-
ket makers should be equal to the average cost of a market
order, hence

ηα = c
σ√
M

+ φ.

7.4 Predicting consequences of tick value
changes

We know that α too small encourages free-riding (directional
HFT) and traditional market makers cannot fix their quotes.

And α too large implies price sloppiness. Moreover it favors
speed (race to the top of book).

What happens to η if one changes the tick value ? And
how to obtain the following optimal situation:

• S ∼ 1.

• η close to 1
2 .

• Cost of market orders = cost of limit orders = 0.

We assume that when changing the tick value:

• σ constant then

η0α0

√
M0 + 0.1α0

√
M0 = ηα

√
M + 0.1α

√
M

• Constant volume.

• Linear shape for the cumulative latent liquidity.

Then

η ∼ (η0 + 0.1)
(α0

α

) 1
2 − 0.1

α∗ ∼
(
η0 + 0.1

0.6

)2

α0.
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